The endocrine stress response is linked to one specific locus on chromosome 3 in a mouse model based on extremes in trait anxiety
详细信息    查看全文
  • 作者:Mariya Gonik (1) (2)
    Elisabeth Frank (1)
    Melanie S Ke?ler (1)
    Darina Czamara (1)
    Mirjam Bunck (1)
    Yi-Chun Yen (1)
    Benno Pütz (1)
    Florian Holsboer (1)
    Thomas Bettecken (1)
    Rainer Landgraf (1)
    Bertram Müller-Myhsok (1)
    Chadi Touma (1)
    Ludwig Czibere (1)
  • 关键词:F2 ; Corticosterone ; Stress response ; HPA axis ; QTL
  • 刊名:BMC Genomics
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:13
  • 期:1
  • 全文大小:559KB
  • 参考文献:1. Herman JP, Cullinan WE: Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. / Trends Neurosci 1997, 20:78-4. CrossRef
    2. Ardayfio P, Kim KS: Anxiogenic-like effect of chronic corticosterone in the light–dark emergence task in mice. / Behav Neurosci 2006, 120:249-56. CrossRef
    3. Kudielka BM, Wust S: Human models in acute and chronic stress: assessing determinants of individual hypothalamus-pituitary-adrenal axis activity and reactivity. / Stress 2010, 13:1-4. CrossRef
    4. de Kloet ER, Joels M, Holsboer F: Stress and the brain: from adaptation to disease. / Nat Rev Neurosci 2005, 6:463-75. CrossRef
    5. Rivest S: Interactions between the immune and neuroendocrine systems. / Prog Brain Res 2010, 181:43-3. CrossRef
    6. Severini C, Improta G, Falconieri-Erspamer G, Salvadori S, Erspamer V: The tachykinin peptide family. / Pharmacol Rev 2002, 54:285-22. CrossRef
    7. Anisman H, Merali Z, Stead JD: Experiential and genetic contributions to depressive- and anxiety-like disorders: clinical and experimental studies. / Neurosci Biobehav Rev 2008, 32:1185-206. CrossRef
    8. Keszthelyi D, Troost FJ, Masclee AA: Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. / Neurogastroenterol Motil 2009, 21:1239-249. CrossRef
    9. Hodges MR, Richerson GB: The role of medullary serotonin (5-HT) neurons in respiratory control: contributions to eupneic ventilation, CO2 chemoreception, and thermoregulation. / J Appl Physiol 2010, 108:1425-432. CrossRef
    10. Flint J, Valdar W, Shifman S, Mott R: Strategies for mapping and cloning quantitative trait genes in rodents. / Nat Rev Genet 2005, 6:271-86. CrossRef
    11. Belzung C, Philippot P: Anxiety from a phylogenetic perspective: is there a qualitative difference between human and animal anxiety? / Neural Plast 2007, 2007:59676. CrossRef
    12. Kromer SA, Kessler MS, Milfay D, Birg IN, Bunck M, Czibere L, Panhuysen M, Putz B, Deussing JM, Holsboer F, Landgraf R, Turck CW: Identification of glyoxalase-I as a protein marker in a mouse model of extremes in trait anxiety. / J Neurosci 2005, 25:4375-384. CrossRef
    13. Bunck M, Czibere L, Horvath C, Graf C, Frank E, Kessler MS, Murgatroyd C, Muller-Myhsok B, Gonik M, Weber P, Putz B, Muigg P, Panhuysen M, Singewald N, Bettecken T, Deussing JM, Holsboer F, Spengler D, Landgraf R: A hypomorphic vasopressin allele prevents anxiety-related behavior. / PLoS One 2009, 4:e5129. CrossRef
    14. Ditzen C, Varadarajulu J, Czibere L, Gonik M, Targosz BS, Hambsch B, Bettecken T, Kessler MS, Frank E, Bunck M, Teplytska L, Erhardt A, Holsboer F, Muller-Myhsok B, Landgraf R, Turck CW: Proteomic-based genotyping in a mouse model of trait anxiety exposes disease-relevant pathways. / Mol Psychiatry 2010, 15:702-11. CrossRef
    15. Erhardt A, Czibere L, Roeske D, Lucae S, Unschuld PG, Ripke S, Specht M, Kohli MA, Kloiber S, Ising M, Heck A, Pfister H, Zimmermann P, Lieb R, Putz B, Uhr M, Weber P, Deussing JM, Gonik M, Bunck M, Kessler MS, Frank E, Hohoff C, Domschke K, Krakowitzky P, Maier W, Bandelow B, Jacob C, Deckert J, Schreiber S, / et al.: TMEM132D, a new candidate for anxiety phenotypes: evidence from human and mouse studies. / Mol Psychiatry 2011, 16:647-63. CrossRef
    16. Kessler MS, Murgatroyd C, Bunck M, Czibere L, Frank E, Jacob W, Horvath C, Muigg P, Holsboer F, Singewald N, Spengler D, Landgraf R: Diabetes insipidus and, partially, low anxiety-related behaviour are linked to a SNP-associated vasopressin deficit in LAB mice. / Eur J Neurosci 2007, 26:2857-864. CrossRef
    17. Almasy L, Blangero J: Human QTL linkage mapping. / Genetica 2009, 136:333-40. CrossRef
    18. Cryan JF, Holmes A: The ascent of mouse: advances in modelling human depression and anxiety. / Nat Rev Drug Discov 2005, 4:775-90. CrossRef
    19. Czibere L, Baur LA, Wittmann A, Gemmeke K, Steiner A, Weber P, Pütz B, Ahmad N, Bunck M, Graf C, Widner R, Kühne C, Panhuysen M, Hambsch B, Rieder G, Reinheckel T, Peters C, Holsboer F, Landgraf R, Deussing JM: Profiling trait anxiety: Transcriptome analysis reveals cathepsin B (Ctsb) as a novel candidate gene for emotionality in mice. / PLoS One 2011, 6:e23604. CrossRef
    20. Touma C, Bunck M, Glasl L, Nussbaumer M, Palme R, Stein H, Wolferstatter M, Zeh R, Zimbelmann M, Holsboer F, Landgraf R: Mice selected for high versus low stress reactivity: a new animal model for affective disorders. / Psychoneuroendocrinology 2008, 33:839-62. CrossRef
    21. Frank E, Kessler MS, Filiou MD, Zhang Y, Maccarrone G, Reckow S, Bunck M, Heumann H, Turck CW, Landgraf R, Hambsch B: Stable isotope metabolic labeling with a novel N-enriched bacteria diet for improved proteomic analyses of mouse models for psychopathologies. / PLoS One 2009, 4:e7821. CrossRef
    22. Jackson DA: Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. / Ecology 1993, 74:2204-214. CrossRef
    23. Heath SC: Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. / Am J Hum Genet 1997, 61:748-60. CrossRef
    24. Heath SC, Snow GL, Thompson EA, Tseng C, Wijsman EM: MCMC segregation and linkage analysis. / Genet Epidemiol 1997, 14:1011-016. CrossRef
    25. Cox A, Ackert-Bicknell CL, Dumont BL, Ding Y, Bell JT, Brockmann GA, Wergedal JE, Bult C, Paigen B, Flint J, Tsaih SW, Churchill GA, Broman KW: A new standard genetic map for the laboratory mouse. / Genetics 2009, 182:1335-344. CrossRef
    26. Green P: Reversible jump Markov chain Monte Carlo. / Biometrika 1995, 82:711-32. CrossRef
    27. Kass RE, Raftery AE: Bayes factors. / J Am Stat Assoc 1995, 90:773-95. CrossRef
    28. Dietrich W, Katz H, Lincoln SE, Shin HS, Friedman J, Dracopoli NC, Lander ES: A genetic map of the mouse suitable for typing intraspecific crosses. / Genetics 1992,131(2):423-47.
    29. Axenovich TI, Aulchenko YS: MQScore_SNP software for multipoint parametric linkage analysis of quantitative traits in large pedigrees. / Ann Hum Genet 2010, 74:286-89. CrossRef
    30. Broman KW, Wu H, Sen S, Churchill GA: R/qtl: QTL mapping in experimental crosses. / Bioinformatics 2003, 19:889-90. CrossRef
    31. Broman KW, Sen S: / A Guide to QTL Mapping in R/QTL. New York: Springer; 2009. CrossRef
    32. Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. / Nature Protoc 2009, 4:44-7. CrossRef
    33. Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. / Nucleic Acids Res 2009, 37:1-3. CrossRef
    34. Maccari S, Darnaudery M, Morley-Fletcher S, Zuena AR, Cinque C, van Reeth O: Prenatal stress and long-term consequences: implications of glucocorticoid hormones. / Neurosci Biobehav Rev 2003, 27:119-27. CrossRef
    35. Wigger A, Sanchez MM, Mathys KC, Ebner K, Frank E, Liu D, Kresse A, Neumann ID, Holsboer F, Plotsky PM, Landgraf R: Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: critical role of vasopressin. / Neuropsychopharmacology 2004, 29:1-4. CrossRef
    36. Frank E, Salchner P, Aldag JM, Salome N, Singewald N, Landgraf R, Wigger A: Genetic predisposition to anxiety-related behavior determines coping style, neuroendocrine responses, and neuronal activation during social defeat. / Behav Neurosci 2006, 120:60-1. CrossRef
    37. Bice P, Valdar W, Zhang L, Liu L, Lai D, Grahame N, Flint J, Li TK, Lumeng L, Foroud T: Genomewide SNP screen to detect quantitative trait loci for alcohol preference in the high alcohol preferring and low alcohol preferring mice. / Alcohol Clin Exp Res 2009, 33:531-37. CrossRef
    38. Salimov RM, Markina NV, Perepelkina OV, Poletaeva II: Exploratory behavior of F2 crosses of mouse lines selected for different brain weight: a multivariate analysis. / Prog Neuropsychopharmacol Biol Psychiatry 2004, 28:583-89. CrossRef
    39. Solberg LC, Ahmadiyeh N, Baum AE, Vitaterna MH, Takahashi JS, Turek FW, Redei EE: Depressive-like behavior and stress reactivity are independent traits in a Wistar Kyoto x Fisher 344 cross. / Mol Psychiatry 2003, 8:423-33. CrossRef
    40. Solberg LC, Baum AE, Ahmadiyeh N, Shimomura K, Li R, Turek FW, Takahashi JS, Churchill GA, Redei EE: Genetic analysis of the stress-responsive adrenocortical axis. / Physiol Genomics 2006, 27:362-69. CrossRef
    41. Williams RW, Bennett B, Lu L, Gu J, DeFries JC, Carosone-Link PJ, Rikke BA, Belknap JK, Johnson TE: Genetic structure of the LXS panel of recombinant inbred mouse strains: a powerful resource for complex trait analysis. / Mamm Genome 2004, 15:637-47. CrossRef
    42. van der Staay FJ, Schuurman T, van Reenen CG, Korte SM: Emotional reactivity and cognitive performance in aversively motivated tasks: a comparison between four rat strains. / Behav Brain Funct 2009, 5:50. CrossRef
    43. Post AM, Weyers P, Holzer P, Painsipp E, Pauli P, Wultsch T, Reif A, Lesch KP: Gene-environment interaction influences anxiety-like behavior in ethologically based mouse models. / Behav Brain Res 2011, 218:99-05. CrossRef
    44. Cramer AO, Waldorp LJ, van der Maas HL, Borsboom D: Comorbidity: a network perspective. / Behav Brain Sci 2010, 33:137-50. CrossRef
    45. Walker JJ, Terry JR, Tsaneva-Atanasova K, Armstrong SP, McArdle CA, Lightman SL: Encoding and decoding mechanisms of pulsatile hormone secretion. / J Neuroendocrinol 2010, 22:1226-238. CrossRef
    46. Brudno M, Poliakov A, Salamov A, Cooper GM, Sidow A, Rubin EM, Solovyev V, Batzoglou S, Dubchak I: Automated whole-genome multiple alignment of rat, mouse, and human. / Genome Res 2004, 14:685-92. CrossRef
    47. Uys G, Ramburan A, Loos B, Kinnear C, Korkie L, Mouton J, Riedemann J, Moolman-Smook J: Myomegalin is a novel A-kinase anchoring protein involved in the phosphorylation of cardiac myosin binding protein C. / BMC Cell Biol 2011, 12:18. CrossRef
    48. Rapp JP: Genetic analysis of inherited hypertension in the rat. / Physiol Rev 2000, 80:135-72.
    49. Alemayehu A, Breen L, Krenova D, Printz MP: Reciprocal rat chromosome 2 congenic strains reveal contrasting blood pressure and heart rate QTL. / Physiol Genomics 2002, 10:199-10.
    50. Zhang M, Kass DA: Phosphodiesterases and cardiac cGMP: evolving roles and controversies. / Trends Pharmacol Sci 2011, 32:360-65. CrossRef
    51. Takimoto E, Belardi D, Tocchetti CG, Vahebi S, Cormaci G, Ketner EA, Moens AL, Champion HC, Kass DA: Compartmentalization of cardiac beta-adrenergic inotropy modulation by phosphodiesterase type 5. / Circulation 2007, 115:2159-167. CrossRef
    52. Bechtold AG, Scheuer DA: Glucocorticoids act in the dorsal hindbrain to modulate baroreflex control of heart rate. / Am J Physiol Regul Integr Comp Physiol 2006, 290:R1003-R1011. CrossRef
    53. Roberts AJ, Phillips TJ, Belknap JK, Finn DA, Keith LD: Genetic analysis of the corticosterone response to ethanol in BXD recombinant inbred mice. / Behav Neurosci 1995, 109:1199-208. CrossRef
    54. Ober C, Abney M, McPeek MS: The genetic dissection of complex traits in a founder population. / Am J Hum Genet 2001, 69:1068-079. CrossRef
    55. Glover M, Pruett SB: Role of corticosterone in immunosuppressive effects of acute ethanol exposure on Toll-like receptor mediated cytokine production. / J Neuroimmune Pharmacol 2006, 1:435-42. CrossRef
    56. Rohner-Jeanrenaud F: Hormonal regulation of energy partitioning. / Int J Obes Relat Metab Disord 2000,24(Suppl 2):S4-S7. CrossRef
    57. Clarke TR, Bain PA, Burmeister M, Payne AH: Isolation and characterization of several members of the murine Hsd3b gene family. / DNA Cell Biol 1996, 15:387-99. CrossRef
    58. Higo S, Hojo Y, Ishii H, Komatsuzaki Y, Ooishi Y, Murakami G, Mukai H, Yamazaki T, Nakahara D, Barron A, Kimoto T, Kawato S: Endogenous synthesis of corticosteroids in the hippocampus. / PLoS One 2011, 6:e21631. CrossRef
    59. Miller WL, Auchus RJ: The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. / Endocr Rev 2011, 32:81-51. CrossRef
    60. Chrousos GP: Stress and sex versus immunity and inflammation. / Sci Signal 2010, 3:pe36. CrossRef
  • 作者单位:Mariya Gonik (1) (2)
    Elisabeth Frank (1)
    Melanie S Ke?ler (1)
    Darina Czamara (1)
    Mirjam Bunck (1)
    Yi-Chun Yen (1)
    Benno Pütz (1)
    Florian Holsboer (1)
    Thomas Bettecken (1)
    Rainer Landgraf (1)
    Bertram Müller-Myhsok (1)
    Chadi Touma (1)
    Ludwig Czibere (1)

    1. Max Planck Institute of Psychiatry, Munich, Germany
    2. Institute for Stroke and Dementia Research, Ludwig Maximilian University, Munich, Germany
文摘
Background The hypothalamic-pituitary-adrenal (HPA) axis is essential to control physiological stress responses in mammals. Its dysfunction is related to several mental disorders, including anxiety and depression. The aim of this study was to identify genetic loci underlying the endocrine regulation of the HPA axis. Method High (HAB) and low (LAB) anxiety-related behaviour mice were established by selective inbreeding of outbred CD-1 mice to model extremes in trait anxiety. Additionally, HAB vs. LAB mice exhibit comorbid characteristics including a differential corticosterone response upon stress exposure. We crossbred HAB and LAB lines to create F1 and F2 offspring. To identify the contribution of the endocrine phenotypes to the total phenotypic variance, we examined multiple behavioural paradigms together with corticosterone secretion-based phenotypes in F2 mice by principal component analysis. Further, to pinpoint the genomic loci of the quantitative trait of the HPA axis stress response, we conducted genome-wide multipoint oligogenic linkage analyses based on Bayesian Markov chain Monte Carlo approach as well as parametric linkage in three-generation pedigrees, followed by a two-dimensional scan for epistasis and association analysis in freely segregating F2 mice using 267 single-nucleotide polymorphisms (SNPs), which were identified to consistently differ between HAB and LAB mice as genetic markers. Results HPA axis reactivity measurements and behavioural phenotypes were represented by independent principal components and demonstrated no correlation. Based on this finding, we identified one single quantitative trait locus (QTL) on chromosome 3 showing a very strong evidence for linkage (2ln (L-score) > 10, LOD > 23) and significant association (lowest Bonferroni adjusted p < 10-28) to the neuroendocrine stress response. The location of the linkage peak was estimated at 42.3 cM (95% confidence interval: 41.3 - 43.3 cM) and was shown to be in epistasis (p-adjusted < 0.004) with the locus at 35.3 cM on the same chromosome. The QTL harbours genes involved in steroid synthesis and cardiovascular effects. Conclusion The very prominent effect on stress-induced corticosterone secretion of the genomic locus on chromosome 3 and its involvement in epistasis highlights the critical role of this specific locus in the regulation of the HPA axis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700