Factors Affecting the Relative Abundance of Nuclear Copies of Mitochondrial DNA (Numts) in Hominoids
详细信息    查看全文
  • 作者:I. D. Soto-Calderón (1) (2)
    E. J. Lee (1)
    M. I. Jensen-Seaman (3)
    N. M. Anthony (1)
  • 关键词:Mitochondrial DNA ; Nuclear integration ; Numt ; Translocation ; Hominoidea ; Great ape
  • 刊名:Journal of Molecular Evolution
  • 出版年:2012
  • 出版时间:4 - October 2012
  • 年:2012
  • 卷:75
  • 期:3
  • 页码:102-111
  • 全文大小:536KB
  • 参考文献:1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403-10
    2. Anthony NM, Clifford SL, Bawe-Johnson M, Abernethy KA, Bruford MW, Wickings EJ (2007) Distinguishing gorilla mitochondrial sequences from nuclear integrations and PCR recombinants: guidelines for their diagnosis in complex sequence databases. Mol Phylogenet Evol 43:553-66 CrossRef
    3. Arora N, Nater A, van Schaik CP, Willems EP, van Noordwijk MA, Goossens B, Morf N, Bastian M, Knott C, Morrogh-Bernard H, Kuze N, Kanamori T, Pamungkas J, Perwitasari-Farajallah D, Verschoor E, Warren K, Krützen M (2010) Effects of pleistocene glaciations and rivers on the population structure of Bornean orangutans ( / Pongo pygmaeus). Proc Natl Acad Sci USA 107:21376-1381 CrossRef
    4. Bensasson D, Zhang D, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution’s misplaced witnesses. TREE 16:314-21
    5. Bensasson D, Feldman MW, Petrov DA (2003) Rates of DNA duplication and mitochondrial DNA insertion in the human genome. J Mol Evol 57:343-54 CrossRef
    6. Bodenteich A, Mitchell LG, Polymeropoulos MH, Merril CR (1992) Dinucleotide repeat in the human mitochondrial D-loop. Hum Mol Genet 1:140 CrossRef
    7. Bowden GR (2010) Gene conversion on the human Y chromosome. University of Leicester (PhD thesis). https://lra.le.ac.uk/handle/2381/9310
    8. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225-39 CrossRef
    9. Charlesworth B (1991) The evolution of sex chromosomes. Science 251:1030-033 CrossRef
    10. Corral M, Baffet G, Kitzis A, Paris B, Tichonicky L, Kruh J, Guguen-Guillouzo C, Defer N (1989) DNA-sequences homologous to mitochondrial genes in nuclei from normal rat tissues and from rat hepatoma-cells. Biochem Biophys Res Commun 162:258-64 CrossRef
    11. Du Buy HG, Riley FL (1967) Hybridization between the nuclear and kinetoplast DNA’s of / Leishmania enriettii and between nuclear and mitochondrial DNA’s of mouse liver. Proc Natl Acad Sci USA 57:790-97 CrossRef
    12. Erlandsson R, Wilson JF, P??bo S (2000) Sex chromosomal transposable element accumulation and male-driven substitutional evolution in humans. Mol Biol Evol 17:804-12 CrossRef
    13. Foote S, Vollrath D, Hilton A, Page DC (1992) The human Y chromosome: overlapping DNA clones spanning the euchromatic region. Science 258:60-6 CrossRef
    14. Gherman A, Chen PE, Teslovich TM, Stankiewicz P, Withers M, Kashuk CS, Chakravarti A, Lupski JR, Cutler DJ, Katsanis N (2007) Population bottlenecks as a potential major shaping force of human genome architecture. PLoS 3(7):e119 CrossRef
    15. Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J et al (1998) Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol 9:585-98 CrossRef
    16. Graur D, Li WH (2000) Fundamentals of Molecular Evolution, 2nd edn. Sinauer Associates, Inc. Sunderland, MA, USA
    17. Greenwood AD, P??bo S (1999) Nuclear insertion sequences of mitochondrial DNA predominate in hair but not in blood of elephants. Mol Ecol 8:133-37 CrossRef
    18. Haag-Liautard C, Coffey N, Houle D, Lynch M, Charlesworth B, Keightley PD (2008) Direct estimation of the mitochondrial DNA mutation rate in / Drosophila melanogaster. PLoS Biol 6:e204. doi:10.1371/journal.pbio.0060204 CrossRef
    19. Hazkani-Covo E (2009) Mitochondrial insertions into primate nuclear genomes suggest the use of / numts as a tool for phylogeny. Mol Biol Evol 26:2175-179 CrossRef
    20. Hazkani-Covo E, Graur D (2007) A comparative analysis of numt evolution in human and chimpanzee. Mol Biol Evol 24:13-8 CrossRef
    21. Hazkani-Covo E, Sorek R, Graur D (2003) Evolutionary dynamics of large numts in the human genome: rarity of independent insertions and abundance of post-insertion duplications. J Mol Evol 56:169-74 CrossRef
    22. Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 6:e1000834. doi:10.1371/journal.pgen.1000834 CrossRef
    23. Henze K, Martin W (2001) How do mitochondrial genes get into the nucleus? Trends Genet 17:383-87 CrossRef
    24. Hughes JF, Skaletsky H, Pyntikova T, Graves TA, van Daalen SKM, Minx PJ, Fulton RS, McGrath SD, Locke DP, Friedman C, Trask BJ, Mardis ER, Warren WC, Repping S, Rozen S, Wilson RK, Page DC (2010) Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature 463:536-39 CrossRef
    25. Ingman M, Gyllensten U (2006) MtDB: human mitochondrial genome database, a resource for population genetics and medical sciences. Nucleic Acid Res 34:D749–D751 CrossRef
    26. Jensen-Seaman MI, Kidd KK (2001) Mitochondrial DNA variation and biogeography of eastern gorillas. Mol Ecol 10:2241-247 CrossRef
    27. Jensen-Seaman MJ, Sarmiento EE, Deinard AS, Kidd KK (2004) Nuclear integrations of mitochondrial DNA in gorillas. Am J Primatol 63:139-47 CrossRef
    28. Jensen-Seaman MI, Wildschutte JH, Soto-Calderón ID, Anthony NM (2009) A comparative approach reveals differences in patterns of numt insertion during hominoid evolution. J Mol Evol 68:688-99 CrossRef
    29. Kaessmann H, Wiebe V, Weiss G, P??bo S (2001) Great ape DNA sequences reveal a reduced diversity and an expansion in humans. Nature 27:155-56
    30. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12:996-006
    31. Kuroki Y, Toyoda A, Noguchi H, Taylor TD, Itoh T, Kim DS, Kim DW, Choi SH, Kim Il-C, Choi HH, Kim YS, Satta Y, Saitou N, Yamada T, Morishita S, Hattori M, Sakaki Y, Park HS, Fujiyama A (2006) Comparative analysis of chimpanzee and human Y chromosomes unveils complex evolutionary pathway. Nature Genet 38:158-67 CrossRef
    32. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947-948 CrossRef
    33. Lascaro D, Castellana S, Gasparre G, Romeo G, Saccone C, Attimonelli M (2008) The RHNumtS compilation: features and bioinformatics approaches to locate and quantify human NumtS. BMC Genomics 9:267 CrossRef
    34. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-452 CrossRef
    35. Lopez JV, Yuhki N, Masuda R, Modi W, O’Brien SJ (1994) Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J Mol Evol 39:174-90
    36. Lopez JV, Culver M, Stephens JC, Johnson WE, O’brien SJ (1997) Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals. Mol Biol Evol 14:277-86 CrossRef
    37. McEvoy BP, Powell JE, Goddard ME, Visscher PM (2011) Human population dispersal ‘‘Out of Africa’-estimated from linkage disequilibrium and allele frequencies of SNPs. Genome Res 21:821-29
    38. Mathews LM, Chi SY, Greenberg N, Ovchinnikov I, Swergold GD (2003) Large differences between LINE-1 amplification rates in the human and chimpanzee lineages. Am J Hum Genet 72:739-48 CrossRef
    39. MITOMAP (2008) A human mitochondrial genome database. http://www.mitomap.org. Accessed October 2008
    40. Mourier T, Hansen AJ, Willerslev E, Arctander P (2001) The human genome project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol Biol Evol 18:1833-837 CrossRef
    41. Nugent JM, Palmer JD (1991) RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell 66:473-81 CrossRef
    42. Perna NT, Kocher TD (1996) Mitochondrial DNA: molecular fossils in the nucleus. Curr Biol 6:128-29 CrossRef
    43. Pesole G, Gissi C, De Chirico A, Saccone C (1999) Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol 48:427-34 CrossRef
    44. Ricchetti M, Tekaia F, Dujon B (2004) Continued colonization of the human genome by mitochondrial DNA. PLoS Biol 2:1313-324 CrossRef
    45. Saccone C, Pesole G, Sbisà (1991) The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J Mol Evol 33:83-1 CrossRef
    46. Sbisà E, Tanzariello F, Reyes A, Pesole G, Saccone C (1997) Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205:125-40 CrossRef
    47. Schmitz J, Ohme M, Zischler H (2002) The complete mitochondrial sequence of / Tarsius bancanus: evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA. Mol Biol Evol 19:544-53 CrossRef
    48. Schmitz J, Piskurek O, Zischler H (2005) Forty million years of independent evolution: a mitochondrial gene and its corresponding nuclear pseudogene in primates. J Mol Evol 61:1-1 CrossRef
    49. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-599 CrossRef
    50. Thomas R, Zischler H, P??vo S, Stoneking M (1996) Novel mitochondrial DNA insertion polymorphism and its usefulness for human population studies. Hum Biol 68:847-54
    51. Thurston MI, Field D (2005) Msatfinder: detection and characterisation of microsatellites. Available from: http://www.bioinf.ceh.ac.uk/msatfinder/. Accessed October 2008
    52. Tilford CA, Kuroda-Kawagushi T, Skaletsky H, Rozen S, Brown LG, Rosenberg M, McPherson JD, Wylie K, Sekhon M, Kucaba TA, Waterson RH, Page DC (2001) A physical map of the human Y chromosome. Nature 409:943-45 CrossRef
    53. Triant DT, DeWoody JA (2007) The occurrence, detection, and avoidance of mitochondrial DNA translocations in mammalian systematics and phylogeography. J Mamm 88:908-29 CrossRef
    54. Ventura M, Catacchio CR, Alkan C, Marques-Bonet T, Sajjadian S, Graves TA, Hormozdiari F, Navarro A, Malig M, Baker C, Lee C, Turner EH, Chen L, Kidd JM, Archidiacono N, Shendure J, Wilson RK, Eichler EE (2011) Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee. Genome Res 21:1640-649 CrossRef
    55. Zardoya R, Meyer A (1998) Cloning and characterization of a microsatellite in the mitochondrial control region of the African side-necked turtle, / Pelomedusa subrufa. Gene 216:149-53 CrossRef
    56. Zhao Z et al (2000) Worldwide DNA sequence variation in a 10-kilobase noncoding region on human chromosome 22. Proc Natl Acad Sci USA 97:11354-1358 CrossRef
    57. Zischler H, Geisert H, von Haeseler A, P??bo S (1995) A nuclear fossil of the mitochondrial D-loop and the origin of modern humans. Nature 378:489-92 CrossRef
    58. Zischler H, Geisert H, Castresana J (1998) A hominoid-specific nuclear insertion of the mitochondrial D-loop: implications for reconstructing ancestral mitochondrial sequences. Mol Biol Evol 15:463-69 CrossRef
  • 作者单位:I. D. Soto-Calderón (1) (2)
    E. J. Lee (1)
    M. I. Jensen-Seaman (3)
    N. M. Anthony (1)

    1. Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA, 70148, USA
    2. Laboratorio de Genética Molecular (GENMOL), University of Antioquia, AA. 1226, Medellín, Colombia
    3. Department of Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
  • ISSN:1432-1432
文摘
Although nuclear copies of mitochondrial DNA (numts) can originate from any portion of the mitochondrial genome, evidence from humans suggests that more variable parts of the mitochondrial genome, such as the mitochondrial control region (MCR), are under-represented in the nucleus. This apparent deficit might arise from the erosion of sequence identity in numts originating from rapidly evolving mitochondrial sequences. However, the extent to which mitochondrial sequence properties impacts the number of numts detected in genomic surveys has not been evaluated. In order to address this question, we: (1) conducted exhaustive BLAST searches of MCR numts in three hominoid genomes; (2) assessed numt prevalence across the four MCR sub-domains (HV1, CCD, HV2, and MCRF); (3) estimated their insertion rates in great apes (Hominoidea); and (4) examined the relationship between mitochondrial DNA variability and numt prevalence in sequences originating from MCR and coding regions of the mitochondrial genome. Results indicate a marked deficit of numts from HV2 and MCRF MCR sub-domains in all three species. These MCR sub-domains exhibited the highest proportion of variable sites and the lowest number of detected numts per mitochondrial site. Variation in MCR insertion rate between lineages was also observed with a pronounced burst in recent integrations within chimpanzees and orangutans. A deficit of numts from HV2/MCRF was observed regardless of age, whereas HV1 is under-represented only in older numts (>25 million years). Finally, more variable mitochondrial genes also exhibit a lower identity with nuclear copies and because of this, appear to be under-represented in human numt databases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700