A Numerical Implementation to Predict Residual Strains from the Homogeneous Stress Hypothesis with Application to Abdominal Aortic Aneurysms
详细信息    查看全文
  • 作者:Stanislav Polzer (1)
    Jiri Bursa (1)
    T. Christian Gasser (2)
    Robert Staffa (3)
    Robert Vlachovsky (3)
  • 关键词:Residual stress ; Abdominal aortic aneurysm ; Finite element analysis ; Patient ; specific geometry
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:41
  • 期:7
  • 页码:1516-1527
  • 全文大小:672KB
  • 参考文献:1. Alastrue, V., M. A. Martinez, and M. Doblare. Modelling adaptative volumetric finite growth in patient-specific residually stresses arteries. / J. Biomech. 41:1773-781, 2008. CrossRef
    2. Alastrue, V., E. Pena, M. A. Martinez, and M. Doblare. Assessing the use of the “opening angle method-to enforce residual stresses in patient specific arteries. / Ann. Biomed. Eng. 35:1821-837, 2007. CrossRef
    3. Auer, M., and T. C. Gasser. Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions. / IEEE Trans. Med. Imaging 29:1022-028, 2010. doi:10.1109/TMI.2009.2039579 . CrossRef
    4. Baek, S., K. R. Rajagopal, and J. D. Humphrey. A theoretical model of enlarging intracranial fusiform aneurysms. / J. Biomech. Eng. 128:142-49, 2006. CrossRef
    5. Balzani, D., J. Schroder, and D. Gross. Numerical simulation of residual stress in arterial walls. / Comput. Mater. Sci. 39:117-23, 2007. CrossRef
    6. Bergel, D. H. The viscoelastic properties of the arterial wall. Ph.D., University of London, 1960.
    7. Chuong, C. J., and Y. C. Fung. On residual stresses in arteries. / J. Biomech. Eng. 108:189-92, 1986. CrossRef
    8. Darling, R. C., C. R. Messina, D. C. Brewster, & L. W. Ottinger. Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. / Circulation 56, II161–II164, 1977.
    9. de Putter, S., B. J. Wolters, M. C. Rutten, M. Breeuwer, F. A. Gerritsen, and F. N. van de Vosse. Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. / J. Biomech. 40:1081-090, 2007. doi:10.1016/j.jbiomech.2006.04.019 . CrossRef
    10. Demiray, H. Large deformation analysis of some soft biological tissues. / J. Biomech. Eng. 103:73-8, 1981. CrossRef
    11. Fillinger, M. F., M. L. Raghavan, S. P. Marra, J. L. Cronenwett, and F. E. Kennedy. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. / J. Vasc. Surg. 36:589-97, 2002. doi:10.1067/mva.2002.125478 . CrossRef
    12. Fung, Y. C. What are residual stresses doing in our blood vessels? / Ann. Biomed. Eng. 19:237-49, 1991. CrossRef
    13. Gasser, T. C., M. Auer, F. Labruto, J. Swedenborg, and J. Roy. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. / Eur. J. Vasc. Endovasc. Surg. 40:176-85, 2010. doi:10.1016/j.ejvs.2010.04.003 . CrossRef
    14. Gasser, T. C., S. Gallinetti, X. Xing, C. Forsell, J. Sedenborg, and J. Roy. Spatial orientation of collagen fibers in the Abdominal Aortic Anerysm wall and its relation to wall mechanics. / Acta Biomater. 8:3091-103, 2012. CrossRef
    15. Gasser, T. C., G. Gorgulu, M. Folkesson, and J. Swedenborg. Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. / J. Vasc. Surg. 48:179-88, 2008. doi:10.1016/j.jvs.2008.01.036 . CrossRef
    16. Gasser, T. C., C. Schulze Bauer, and G. A. Holzapfel. A three-dimensional finite element model for arterial clamping. / ASME J. Biomech. Eng. 124:355-63, 2001. CrossRef
    17. Green, A. E., and J. E. Adkins. Large elastic deformations, 2nd edn. Oxford, England: Oxford University Press, 1970.
    18. Greenwald, S. E., J. E. Moore Jr., A. Rachev, T. P. Kane, J. J. Meister. Experimental investigation of the distribution of residual strains in the artery wall. / J. Biomech. Eng. 119(4):438-44, 1997.
    19. Hans, S. S., O. Jareunpoon, M. Balasubramaniam, and G. B. Zelenock. Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. / J. Vasc. Surg. 39:584-88, 2005. CrossRef
    20. Heikkinen, M., J. P. Salenius, and O. Auvinen. Ruptured abdominal aortic aneurysm in a well-defined geographic area. / J. Vasc. Surg. 36:291-96, 2002. doi:10.1067/mva.2002.125479 . CrossRef
    21. Humphrey, J. D. Cardiovascular Solid Mechanics. Cells, Tissues and Organs. New York, NY: Springer, 2002.
    22. Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. / Math. Model. Methods. Appl. Sci. 12, 407-30, 2002.
    23. Kazi, M., J. Thyberg, P. Religa, J. Roy, P. Eriksson, U. Hedin, and J. Swedenborg. Influence of intraluminal thrombus on structural and cellular composition of Abdominal Aortic Aneurysm wall. J. Vasc. Surg. 38, 1283-292, 2003.
    24. Kazi, M., J. Thyberg, P. Religa, J. Roy, P. Eriksson, U. Hedin, / et al. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. / J. Vasc. Surg. 38:1283-292, 2003. CrossRef
    25. Kroner, E. Allgemeine Kontinuumstheorie der Verzerrungen und Eigenspannungen. / Arch. Rational Mech. Anal. 4:273-34, 1960. CrossRef
    26. Kroon, M., and G. A. Holzapfel. A theoretical model for fibroblast-controlled growth of saccular cerebral aneurysms. / J. Theor. Biol. 257:73-3, 2009. CrossRef
    27. Lederle, F. A., S. E. Wilson, G. R. Johnson, D. B. Reinke, F. N. Littooy, C. W. Acher, D. J. Ballard, L. M. Messina, I. L. Gordon, E. P. Chute, / et al. Immediate repair compared with surveillance of small abdominal aortic aneurysms. / N. Engl. J. Med. 346:1437-444, 2002. doi:10.1056/NEJMoa012573 . CrossRef
    28. Lu, J., X. Zhou, and M. L. Raghavan. Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms. / J. Biomech. 40:693-96, 2007. doi:10.1016/j.jbiomech.2006.01.015 . CrossRef
    29. Maier, A., M. W. Gee, C. Reeps, J. Pongratz, H. H. Eckstein, and W. A. Wall. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. / Ann. Biomed. Eng. 38:3124-134, 2010. CrossRef
    30. Martufi, G., and Gasser, T. C. Turnover of fibrillar collagen in soft biological tissue with application to the expansion of abdominal aortic aneurysms. / J. R. Soc. Interface. 2012, doi:10.1098/rsif.2012.0416 .
    31. Martufi, G., and T. C. Gasser. Turnover of fibrillar collagen in soft biological tissue with application to the expansion of abdominal aortic aneurysms. / J. R. Soc. Interface 2012. (accepted for publication).
    32. Nicholls, S. C., J. B. Gardner, M. H. Meissner, and H. K. Johansen. Rupture in small abdominal aortic aneurysms. / J. Vasc. Surg. 28:884-88, 1998. CrossRef
    33. Ogden, R. W. Non-linear elastic deformations. New York: Dover, 1997.
    34. Polzer, S., T. C. Gasser, J. Swedenborg, and J. Bursa. The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms. / Eur. J. Vasc. Endovasc. Surg. 41:467-73, 2011. CrossRef
    35. Polzer, S., T. C. Gasser, J. Bursa, R. Staffa, R. Vlachovsky, V. Man, and P. Skacel. Importance of material model in wall stress prediction in abdominal aortic aneurysms. / Med. Eng. Phys. 2013 (accepted)
    36. Rachev, A., and S. E. Greenwald. Residual strains in conduit arteries. / J. Biomech. 36:661-70, 2003. CrossRef
    37. Rachev, A., and K. Hayashi. Theoretical study of the effect of vascular smooth muscle contraction on strain and stress distribution in arteries. / Ann. Biomed. Eng. 27:459-68, 1999. doi:10.1114/1.191 . CrossRef
    38. Rachev, A., N. Stergiopulos, and J. J. Meister. A model for geometric and mechanical adaptation of arteries to sustained hypertension. / J. Biomech. Eng. 120:9-7, 1998. CrossRef
    39. Raghavan, M. L., S. Trivedi, A. Nagaraj, D. D. McPherson, and K. B. Chandran. Three-dimensional finite element analysis of residual stress in arteries. / Ann. Biomed. Eng. 32:257-63, 2004. CrossRef
    40. Riveros, F., S. Chandra, E. A. Finol, T. C. Gasser, and J. F. Rodriguez. A pull-back algorithm to determine the unloaded vascular geometry in anisotropic hyperelastic AAA passive mechanics. / Ann. Biomed. Eng. 2012, (accepted for publication).
    41. Rizzo, R. J., W. J. McCarthy, S. N. Dixit, M. P. Lilly, V. P. Shively, W. R. Flinn, and J. S. T. Yao. Collagen types and matrix protein content in human abdominal aortic aneurysms. / J. Vasc. Surg. 10:365-73, 2011.
    42. Rodriguez, E. K., A. Hoger, and A. D. McCulloch. Stress-dependent finite element growth in soft elastic tissues. / J. Biomech. 27:455-67, 1994. CrossRef
    43. Skalak, R., S. Zargaryan, R. K. Jain, P. A. Netti, and A. Hoger. Compatibility and the genesis of residual stress by volumetric growth. / J. Math. Biol. 34:889-14, 1996.
    44. Taber, L. A. Biomechanics of growth, remodeling and morphogenesis. / Appl. Mech. Rev. 48:487-45, 1995. CrossRef
    45. Takamizawa, K., and K. Hayashi. Strain energy density function and uniform strain hypothesis for arterial mechanics. / J. Biomech. 20:7-7, 1987. CrossRef
    46. The UK Small Aneurysm Trial Participants. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. / Lancet 352(9141):1649-655, 1998.
    47. Vaishnav, R. N., and J. Vossoughi. Residual stress and strain in aortic segments. / J. Biomech. 20:235-37, 1987. CrossRef
    48. Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. / J. Biomech. 39:1324-334, 2006. doi:10.1016/j.jbiomech.2005.03.003 . CrossRef
    49. Venkatasubramaniam, A. K., M. J. Fagan, T. Mehta, K. J. Mylankal, B. Ray, G. Kuhan, I. C. Chetter, and P. T. McCollum. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. / Eur. J. Vasc. Endovasc. Surg. 28:168-76, 2004. doi:10.1016/j.ejvs.2004.03.029 .
    50. Vossoughi, J. Longitudinal residual strain in arteries. 11th Southern Biomedical Engineering Conference, Memphis, Tennessee, pp. 17-9, 1992.
    51. Wang, D. H., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. / J. Vasc. Surg. 36:598-04, 2002. CrossRef
    52. Wilson, J. S., S. Baek, and J. D. Humphrey. Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. / J. R. Soc. Interface. 2012. doi:10.1098/rsif.2012.0097 .
    53. ANSYS verification manual. www1.ansys.com/customer/content/documentation/140/ans_vm.pdf.
    54. Zeinali-Davarani, S., L. G. Raguin, and S. Baek. An inverse optimization approach toward testing different hypotheses of vascular homeostasis using image-based models. / Int. J. Struct. Chan Sol. 3:33-5, 2011.
    55. Zeinali-Davarani, S., and Baek, S. Medical image-based simulation of abdominal aortic aneurysm growth / . Mech. Res. Commun. 2012.
    56. Zhou, X., and J. Lu. Estimation of vascular open configuration using finite element inverse elastostatic method. / Eng. Comp. 25:49-9, 2009. doi:10.1007/s00366-008-0104-3 . CrossRef
  • 作者单位:Stanislav Polzer (1)
    Jiri Bursa (1)
    T. Christian Gasser (2)
    Robert Staffa (3)
    Robert Vlachovsky (3)

    1. Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Technicka 2896/2, 616 69, Brno, Czech Republic
    2. Department of Solid Mechanics, Royal Institute of Technology, Stockholm, Sweden
    3. 2nd Department of Surgery, St. Anne’s University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
  • ISSN:1573-9686
文摘
Wall stress analysis of abdominal aortic aneurysm (AAA) is a promising method of identifying AAAs at high risk of rupture. However, neglecting residual strains (RS) in the load-free configuration of patient-specific finite element analysis models is a sever limitation that strongly affects the computed wall stresses. Although several methods for including RS have been proposed, they cannot be directly applied to patient-specific AAA simulations. RS in the AAA wall are predicted through volumetric tissue growth that aims at satisfying the homogeneous stress hypothesis at mean arterial pressure load. Tissue growth is interpolated linearly across the wall thickness and aneurysm tissues are described by isotropic constitutive formulations. The total deformation is multiplicatively split into elastic and growth contributions, and a staggered schema is used to solve the field variables. The algorithm is validated qualitatively at a cylindrical artery model and then applied to patient-specific AAAs (n?=?5). The induced RS state is fully three-dimensional and in qualitative agreement with experimental observations, i.e., wall strips that were excised from the load-free wall showed stress-releasing-deformations that are typically seen in laboratory experiments. Compared to RS-free simulations, the proposed algorithm reduced the von Mises stress gradient across the wall by a tenfold. Accounting for RS leads to homogenized wall stresses, which apart from reducing the peak wall stress (PWS) also shifted its location in some cases. The present study demonstrated that the homogeneous stress hypothesis can be effectively used to predict RS in the load-free configuration of the vascular wall. The proposed algorithm leads to a fast and robust prediction of RS, which is fully capable for a patient-specific AAA rupture risk assessment. Neglecting RS leads to non-realistic wall stress values that severely overestimate the PWS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700