Topological Analysis of Amplicon Structure in Comparative Genomic Hybridization (CGH) Data: An Application to ERBB2/HER2/NEU Amplified Tumors
详细信息    查看全文
  • 关键词:Copy number aberrations ; Cancer ; Computational homology ; First homology group
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9667
  • 期:1
  • 页码:113-129
  • 全文大小:754 KB
  • 参考文献:1.Arriola, E., Marchio, C., Tan, D.S., et al.: Genomic analysis of the HER2/TOP2A amplicon in breast cancer and breast cancer cell lines. Lab Invest. 88(5), 491–503
    2.Arsuaga, J., Baas, N.A., DeWoskin, D., et al.: Topological analysis of gene expression arrays identifies high risk molecular subtypes in breast cancer. Appl. Algebra Eng. Commun. Comput. 23(1), 3–15 (2012)MathSciNet CrossRef MATH
    3.Arsuaga, J., Borrman, T., Cavalcante, R., Gonzalez, G., Park, C.: Identification of copy number aberrations in breast cancer subtypes using persistence topology. Microarrays 4(3), 339–369 (2015)CrossRef
    4.Barlund, M., Tirkkonen, M., Forozan, F., Tanner, M.M., Kallioniemi, O., Kallioniemi, A.: Increased copy number at 17q22-q24 by CGH in breast cancer is due to high-level amplification of two separate regions. Genes Chromosom. Cancer. 20(4), 372–376 (1997)CrossRef
    5.Barrett, M.T., Anderson, K.S., Lenkiewicz, E., et al.: Genomic amplification of 9p24.1 targeting JAK2, PD-L1, and PD-L2 is enriched in high-risk triple negative breast cancer. Oncotarget 6(28), 26483–26493 (2015)CrossRef
    6.Bengtsson, H., Ray, A., Spellman, P., Speed, T.P.: A single-sample method for normalizing and combining full-resolution copy numbers from multiple platforms, labs and analysis methods. Bioinformatics 25(7), 861–867 (2009)CrossRef
    7.Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57(1), 289–300 (1995)MathSciNet MATH
    8.Bhatlekar, S., Fields, J.Z., Boman, B.M.: HOX genes and their role in the development of human cancers. J. Mol. Med. (Berl) 92(8), 811–823 (2014)CrossRef
    9.Bilal, E., Vassallo, K., Toppmeyer, D., et al.: Amplified loci on chromosomes 8 and 17 predict early relapse in ER-positive breast cancers. PLoS One 7(6), e38575 (2012)CrossRef
    10.Cavalcante, R.: Using Homology and networks to locate copy number aberrations associated to recurrence in breast cancer. MA Thesis, San Francisco State University (2012)
    11.Chin, K., DeVries, S., Fridlyand, J., Spellman, P.T., Roydasgupta, R., et al.: Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10, 529–541 (2006)CrossRef
    12.Ching, H.C., Naidu, R., Seong, M.K., Har, Y.C., Taib, N.A.: Integrated analysis of copy number and loss of heterozygosity in primary breast carcinomas using high-density SNP array. Int. J. Oncol. 39(3), 621–633 (2011)
    13.Climent, J., Garcia, J.L., Mao, J.H., Arsuaga, J., Perez-Losada, J.: Characterization of breast cancer by array comparative genomic hybridization. Biochem Cell Biol. 85(4), 497–508 (2007)CrossRef
    14.Desmedt, C., Voet, T., Sotiriou, C., Campbell, P.J.: Next-generation sequencing in breast cancer: first take home messages. Curr Opin. Oncol. 24(6), 597–604 (2012)CrossRef
    15.DeWoskin, D., Climent, J., Cruz-White, I., Vazquez, M., Park, C., et al.: Applications of computational homology to prediction of treatment response in breast cancer patients. Topology Appl. 157, 157–164 (2010)MathSciNet CrossRef MATH
    16.Fridlyand, J., Dimitrov, P.: aCGH: Classes and functions for Array Comparative GenomicHybridization data. R package version 1.34.0
    17.Fridlyand, J., Snijders, A.M., Pinkel, D., Albertson, D.G., Jain, A.N.: Hidden Markov models approach to the analysis of array CGH data. J. Multivar. Anal. 90, 132–153 (2004)MathSciNet CrossRef MATH
    18.Fridlyand, J., Snijders, A.M., Ylstra, B., Li, H., Olshen, A., et al.: Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 6, 96 (2006)CrossRef
    19.Green, M.R., Monti, S., Rodig, S.J., et al.: Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116(17), 3268–3277
    20.Horlings, H.M., Lai, C., Nuyten, D.S.A., et al.: Integration of DNA copy number alterations and prognostic gene expression signatures in breast cancer patients. Clin Cancer Res. 16(2), 651–663 (2010)CrossRef
    21.Horlings, H.M., Lai, C., Nuyten, D.S.A., et al.: Supplementary Data. Clin. Cancer Res. 16(2), 651–663 (2010b). http://​clincancerres.​aacrjournals.​org/​content/​16/​2/​651/​suppl/​DC1
    22.Hupe, P., Stransky, N., Thiery, J.P., Radvanyi, F., Barillot, E.: Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics 20(18), 3413–3422 (2004)CrossRef
    23.Jacot, W., Fiche, M., Zaman, K., Wolfer, A., Lamy, P.J.: (2013) The HER2 amplicon in breast cancer: Topoisomerase IIA and beyond. Biochim. Biophys. Acta. 1, 146–157 (1836)
    24.Jonsson, G., Staaf, J., Vallon-Christersson, J., Ringner, M., Holm, K., et al.: Genomic subtypes of breast cancer identified by array comparative genomic hybridization display distinct molecular and clinical characteristics. Breast Cancer Res. 12(3), R42 (2010)CrossRef
    25.Lai, W.R., Johnson, M.D., Kucherlapati, R., Park, P.J.: Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics (2005). doi:10.​1093/​bioinformatics/​bti611
    26.Lai, C., Horlings, H., van de Vijver, M.J., et al.: SIRAC: supervised identification of regions of aberration in aCGH datasets. BMC Bioinform. 8, 422 (2007)CrossRef
    27.Latham, C., Zhang, A., Nalbanti, A., et al.: Frequent co-amplification of two different regions on 17q in aneuploid breast carcinomas. Cancer Genet. Cytogenet. 127(1), 16–23 (2001)CrossRef
    28.Leiserson, M.D., Vandin, F., H-T, Wu, et al.: Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet. 47, 106–114 (2015)CrossRef
    29.Mahmood, S.F., Gruel, N., Chapeaublanc, E., et al.: A siRNA screen identifies RAD21, EIF3H, CHRAC1 and TANC2 as driver genes within the 8q23, 8q24.3 and 17q23 amplicons in breast cancer with effects on cell growth, survival and transformation. Carcinogenesis 35(3), 670–682 (2014)CrossRef
    30.Martin-Castillo, B., Lopez-Bonet, E., Bux, M., et al.: Cytokeratin 5/6 fingerprinting in HER2-positive tumors identifies a poor prognosis and trastuzumab-resistant basal-HER2 subtype of breast cancer. Oncotarget 6(9), 7104–22 (2015)CrossRef
    31.Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39, 419–441 (2008)MathSciNet CrossRef MATH
    32.Nielsen, K.V., Muller, S., Mller, S., Schonau, A., Balslev, E., Knoop, A.S., Ejlertsen, B.: Aberrations of ERBB2 and TOP2A genes in breast cancer. Mol. Oncol. 4(2), 161–168 (2010)CrossRef
    33.Olshen, A.B., Venkatraman, E.S., Lucito, R., Wigler, M.: Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5(4), 557–572 (2004)CrossRef MATH
    34.Perea, J., Harer, J.: Sliding windows and persistence: An application of topological methods to signal analysis. Found. Computat. Math. 15(3), 799–838
    35.Perou, C., Borresen-Dale, A.L.: Systems biology and genomics of breast cancer. Cold Spring Harbor Perspect. Biol. 3, a003293 (2011)CrossRef
    36.Pinkel, D., Albertson, D.G.: Array comparative genomic hybridization and its applications in cancer. Nat. Genet. 37(Suppl), S11–S17 (2005)CrossRef
    37.Rauta, J., Alarmo, E.L., Kauraniemi, P., et al.: The serine-threonine protein phosphatase PPM1D is frequently activated through amplification in aggressive primary breast tumours. Breast Cancer Res. Treat. 95(3), 257–263 (2006)CrossRef
    38.Rebouh: Exploring topological methods to study topological imbalance in breast cancer. San Francisco State University MA thesis (2012)
    39.Sinclair, C.S., Rowley, M., Naderi, A., Couch, F.J.: The 17q23 amplicon and breast cancer. Breast Cancer Res. Treat. 78(3), 313–322 (2003)CrossRef
    40.Tausz, A., Vejdemo-Johansson, M., Adams, H.: JavaPlex: A research software package for persistent (co)homology. In: Hong, H., Yap, C. (eds.) Mathematical Software – ICMS 2014. LNCS, vol. 8592, pp. 129–136. Springer, Heidelberg (2014)
    41.Thompson, P.A., Brewster, A.M., Kim-Anh, D.: Selective genomic copy number imbalances and probability of recurrence in early-stage breast cancer. PLoS One 6(8), e23543 (2010)CrossRef
    42.Torresan, C., Oliveira, M.M., Pereira, S.R., et al.: Increased copy number of the DLX4 homeobox gene in breast axillary lymph node metastasis. Cancer Genet. 207(5), 177–187 (2014)CrossRef
    43.Ulz, P., Heitzer, E., Speicher, M.: Co-occurrence of MYC amplification and TP53 mutations in human cancer. Nat. Genet. 48(2), 104–106 (2016)CrossRef
    44.Webster, L.R., Provan, P.J., Graham, D.J., et al.: Prohibitin expression is associated with high grade breast cancer but is not a driver of amplification at 17q21.33. Pathology 45(7), 629–636 (2013). doi:10.​1097/​PAT.​0000000000000004​ CrossRef
    45.Willenbrock, H., Fridlyand, J.: A comparison study: applying segmentation to array CGH data for downstream analyses. Bioinformatics 21(22), 4084–4091 (2005)CrossRef
    46.Wilkerson, P.M., Reis-Filho, J.S.: The 11q13-q14 amplicon: clinicopathological correlations and potential drivers. Genes Chromosom. Cancer 52(4), 333–355 (2013)CrossRef
    47.Zhou, X., Rao, N.P., Cole, S.W., Mok, S.C., Chen, Z., Wong, D.T.: Progress in concurrent analysis of loss of heterozygosity and comparative genomic hybridization utilizing high density single nucleotide polymorphism arrays. Cancer Genet. Cytogenet 159(1), 53–57 (2005)CrossRef
  • 作者单位:Sergio Ardanza-Trevijano (15)
    Georgina Gonzalez (16)
    Tyler Borrman (17)
    Juan Luis Garcia (18)
    Javier Arsuaga (16) (19)

    15. Department of Physics and Applied Mathematics, University of Navarra, 31080, Pamplona, Spain
    16. Department of Molecular and Cellular Biology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
    17. Medical School, University of Massachusetts, 368 Plantation Street, Worcester, MA, 01605, USA
    18. Centro de Investigación del Cancer, Universidad de Salamanca, 37007, Salamanca, Spain
    19. Department of Mathematics, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
  • 丛书名:Computational Topology in Image Context
  • ISBN:978-3-319-39441-1
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
  • 卷排序:9667
文摘
DNA copy number aberrations (CNAs) play an important role in cancer and can be experimentally detected using microarray comparative genomic hybridization (CGH) techniques. Amplicons, CNAs that extend over large sections of the genome, are difficult to study since they may contain multiple independent and dependent copy number changes. Here, we propose an algorithm to find the CNAs structure within a given amplicon. Our method relies on the observation that co-occurring CNAs can be encoded as 1-dimensional cycles. Applying this method to breast cancer patients known as ERBB2/HER2/NEU amplified we find three regions that can be co-occuring: the first region is in the cytoband 17q12, where the ERBB2 gene is located, the second region expands between 17q21.2 to 17q21.31 and includes the keratin genes, the third one is 17q21.33. We suggest that the first homology group helps uncovering the structure of amplicons.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700