The difference in responses to nitrogen deprivation and re-supply at seedling stage between two barley genotypes differing nitrogen use efficiency
详细信息    查看全文
  • 作者:Hongwei Xu ; Chenghong Liu ; Ruiju Lu ; Guimei Guo ; Zhiwei Chen…
  • 关键词:Nitrogen deprivation ; Barley (Hordeum vulgare L.) ; Physiological and molecular responses ; Nitrogen use efficiency
  • 刊名:Plant Growth Regulation
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:79
  • 期:1
  • 页码:119-126
  • 全文大小:927 KB
  • 参考文献:Bustin SA, Benes V et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. doi:10.​1373/​clinchem.​2008.​112797 CrossRef PubMed
    Céline RM, Anne K, Francxois B, Bertrand N et al (2008) Plant response to nitrate starvation is determined by N storage capacity matched by nitrate uptake capacity in two Arabidopsis genotypes. J Exp Bot 59(4):779–791. doi:10.​1093/​jxb/​erm363 CrossRef
    Chen ZW, Zou L, Lu RJ et al (2010) The study on the relationship between the traits for low-nitrogen tolerance of different barley genotypes at seedling stage and grain yield. J Triticeae Crops 30(1):158–162. doi:10.​1016/​j.​jcs.​2013.​06.​009
    Coque M, Martin A, Veyrieras JB, Hirel B, Gallais A (2008) Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 3. QTL detection and coincidences. Theor Appl Genet 117:729–747. doi:10.​1007/​s00122-008-0815-2 CrossRef PubMed
    De Macale MAR, Velk PLG (2004) The role of Azolla covers in improving the nitrogen useefficiency of lowland rice. Plant Soil 263(1):311–321. doi:10.​1023/​B:​PLSO.​0000047742.​67467.​50 CrossRef
    Ding CQ, Wang Y, You SL, Liu ZH, Wang SH, Ding YF (2015) Digital gene expression analysis reveals nitrogen fertilizer increases panicle size by repressing Hd3a signaling in rice. Plant Growth Regul. doi:10.​1007/​s10725-015-0108-0
    Duan YH, Zhang YL, Ye LT, Fan XR, Xu GH, Shen QR (2007) Responses of rice cultivars with different nitrogen use efficiency to partial nitrate nutrition. Ann Bot (Lond) 99:1153–1160. doi:10.​1093/​aob/​mcm051 CrossRef
    Fan XR, Jia LJ, Li YL et al (2007) Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. J Exp Bot 58(7):1729–1740. doi:10.​1093/​jxb/​erm033 CrossRef PubMed
    Fuentas SI, Allen DJ, Ortiz-Lopez A, Hernández G (2001) Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J Exp Bot 52(358):1071–1081. doi:10.​1093/​jexbot/​52.​358.​1071 CrossRef
    Goodall AJ, Kumar P, Tobin AK (2013) Identification and expression analyses of cytosolic glutamine synthetase genes in barley (Hordeum vulgare L.). Plant Cell Physiol 54(4):492–505. doi:10.​1093/​pcp/​pct006 CrossRef PubMed
    Habash DZ, Massiah AJ, Rong HL, Wallsgrove RM, Leigh RA (2001) The role of cytosolic glutamine synthetase in wheat. Ann Appl Biol 138(1):83–89. doi:10.​1111/​j.​1744-7348.​2001.​tb00087.​x CrossRef
    Hawkesford MJ, Barraclough P (2011) The molecular and physiological basis of nutrient use efficiency in crops. Blackwell, London
    Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32
    Ishiyama K, Inoue E, Tabuchi M et al (2004a) Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol 45(11):1640–1647. doi:10.​1093/​pcp/​pch190 CrossRef PubMed
    Ishiyama K, Inoue E, Watanabe-Takahashi A et al (2004b) Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. J Biol Chem 279(16):16598–16605. doi:10.​1074/​jbc.​M313710200 CrossRef PubMed
    Kant S, Bi YM, Rothstein SJ (2011) Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J Exp Bot 62(4):1499–1509. doi:10.​1093/​jxb/​erq297 CrossRef PubMed
    Khan MI, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2015) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul. doi:10.​1007/​s10725-015-0071-9
    Kleinhofs A, Warner RL (1990) Advances in nitrate assimilation. In: Stumpf PK, Conn EE, Miflin BJ, Lea PJ (eds) The biochemistry of plants, vol 16, intermediary nitrogen metabtdism. Academic Press, New York, pp 89–120
    Li BZ, Xin WJ, Sun SB, Shen QR, Xu GH (2006) Physiological and molecular responses of nitrogen-starved rice plants to re-supply of different nitrogen sources. Plant Soil 287:145–159. doi:10.​1007/​s11104-006-9051-1 CrossRef
    Peng M, Hudson D, Schofield A, Tsao R, Yang R, Gu H, Bi YM, Rothstein SJ (2008) Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. J Exp Bot 59:2933–2944. doi:10.​1093/​jxb/​ern148 CrossRef PubMed PubMedCentral
    Pozuelo M, MacKintosh C, Galván A et al (2001) Cytosolic glutamine synthetase and not nitrate reductase from the green alga Chlamydomonas reinhardtii is phosphorylated and binds 14-3-3 proteins. Planta 212(2):264–269. doi:10.​1007/​s004250000388 CrossRef PubMed
    Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363. doi:10.​2134/​agronj1999.​0002196200910003​0001x CrossRef
    Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11(9):440–448. doi:10.​1016/​j.​tplants.​2006.​07.​004 CrossRef PubMed
    Shi WM, Xu WF, Li SM, Zhao XQ, Dong GQ (2010) Responses of two rice cultivars differing in seedling-stage nitrogen use efficiency to growth under low-nitrogen conditions. Plant Soil 326:291–302. doi:10.​1007/​s11104-009-0007-0 CrossRef
    Taira M, Valtersson U, Burkhardt B, Ludwig RA (2004) Arabidopsis thaliana GLN2-Encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. Plant Cell 16:2048–2058. doi:10.​1105/​tpc.​104.​022046 CrossRef PubMed PubMedCentral
    Vidmar JJ, Zhuo D, Siddiqi MY et al (2000) Isolation and characterization of HvNRT2.3 and HvNRT2.4, cDNAs encoding high-affinity nitrate transporters from roots of barley. Plant Physiol 122(3):783–792. doi:10.​1104/​pp.​122.​3.​783 CrossRef PubMed PubMedCentral
    Viégas RA, Barreto de Melo AR, Gomes da Silveira JA (1999) Nitrate reductase activity and proline accumulation in cashew in response to NaCl salt shock. Revista Brasileira de Fisiologia Vegetal 11(1):21–2821
    Xu GH, Fan XR, Miller AJ (2012) Plant Nitrogen Assimilation and Use Efficiency. Annu Rev Plant Biol 63:153–182. doi:10.​1146/​annurev-arplant-042811-105532 CrossRef PubMed
    Yang X, Wu J, Ziegler TE, Yang X et al (2011) Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize. Plant Physiol 157:1841–1852. doi:10.​1104/​pp.​111.​187898 CrossRef PubMed PubMedCentral
    Yuan L, Loqué D, Ye F et al (2007) Nitrogen-dependence posttranscriptional regulation of the ammonium transporter AtAMT1; 1. Plant Physiol 143:732–744. doi:10.​1104/​pp.​106.​093237 CrossRef PubMed PubMedCentral
    Zhang CF, Peng SB, Peng XX et al (1997) Response of glutamine synthetase isoforms to nitrogen sources in rice (Oryza sativa L.) roots. Plant Sci 125:163–170. doi:10.​1016/​S0168-9452(97)00075-7 CrossRef
  • 作者单位:Hongwei Xu (1)
    Chenghong Liu (1)
    Ruiju Lu (1)
    Guimei Guo (1)
    Zhiwei Chen (1)
    Ting He (1)
    Runhong Gao (1)
    Yingbo Li (1)
    Jianhua Huang (1)

    1. Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, No.2901, Bei Di Road, Shanghai, 201106, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-5087
文摘
Understanding how crops respond to limited nitrogen supply is essential to develop new ways of manipulating genes for breeding new crop cultivars or lines with high nitrogen use efficiency (NUE). However, little is known about the differences among barley (Hordeum vulgare L.) genotypes in their responses to N starvation and subsequent N re-supply. In this study, two barley genotypes, BI-04 (higher NUE) and BI-45 (lower NUE) were used to investigate N uptake and assimilation at seedling stage in response to N deprivation and re-supply at low (3.75 mM) and normal (7.5 mM) levels. Compared to the continues normal N supply, under N deprivation, both genotypes exhibited less total biomass and N accumulation, but had higher N uptake efficiency, with BI-04 having more biomass, N accumulation and nitrate reductase activity than BI-45. The higher nitrate reductase activity in roots of BI-04 versus BI-45 was associated with up-regulated HvNar1 gene expression under N deprivation condition. NUE of both genotypes was higher under low N re-supply than under normal N re-supply after N deprivation. In addition, glutamine synthetase activity in the two barley roots was higher under low N re-supply than under normal N re-supply, which was associated with the expression of HvGS1_1 and HvGS1_2 genes. Compared to the lower NUE genotype (BI-45), the higher NUE genotype (BI-04) under low N re-supply performed better in response to N stress, and may require relatively less N fertilizer application in production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700