Positron Emission Tomography with Pittsburgh Compound B in Diagnosis of Early Stage Alzheimer’s Disease
详细信息    查看全文
  • 作者:Jianjun Jia (1)
    Binbin Sun (2)
    Zhe Guo (3)
    Jinming Zhang (3)
    Jiahe Tian (3)
    Hongchuan Tang (1)
    Luning Wang (1)
  • 关键词:Alzheimer’s disease ; Mild cognitive impairment ; Positron emission tomography ; Pittsburgh compound B ; β ; amyloid
  • 刊名:Cell Biochemistry and Biophysics
  • 出版年:2011
  • 出版时间:January 2011
  • 年:2011
  • 卷:59
  • 期:1
  • 页码:57-62
  • 全文大小:331KB
  • 参考文献:1. Plassman, B. L., Langa, K. M., Fisher, G. G., Heeringa, S. G., Weir, D. R., Ofstedal, M. B., et al. (2007). Prevalence of dementia in the United States: the aging, demographics, and memory study. / Neuroepidemiology, / 29, 125-32. CrossRef
    2. Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: the amyloid cascade hypothesis. / Science, / 256, 184-85. CrossRef
    3. Mirra, S. S., Heyman, A., McKeel, D., Sumi, S. M., Crain, B. J., Brownlee, L. M., et al. (1991). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. / Neurology, / 41, 479-86.
    4. Portet, F., Ousset, P. J., Visser, P. J., Frisoni, G. B., Nobili, F., Scheltens, P., et al. (2006). Mild cognitive impairment (MCI) in medical practice: a critical review of the concept and new diagnostic procedure Report of the MCI Working Group of the European Consortium on Alzheimer’s Disease. / Journal of Neurology, Neurosurgery and Psychiatry, / 77, 714-18. CrossRef
    5. Levey, A., Lah, J., Goldstein, F., Steenland, K., & Bliwise, D. (2006). Mild cognitive impairment: an opportunity to identify patients at high risk for progression to Alzheimer’s disease. / Clinical Therapeutics, / 28, 991-001. CrossRef
    6. Kemppainen, N. M., Aalto, S., Wilson, I. A., Nagren, K., Helin, S., Bruck, A., et al. (2007). PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. / Neurology, / 68, 1603-606. CrossRef
    7. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state- a practical method for grading the cognitive state of patients for the clinician. / Journal of Psychiatric Research, / 12, 189-98. CrossRef
    8. Lichtenstein, M. J., & Schaffner, W. (1985). Assessing activities of daily living. / Hospital Practice (Office Edition), / 20, 8-.
    9. Mok, E. H., Lam, L. C., & Chiu, H. F. (2004). Category verbal fluency test performance in Chinese elderly with Alzheimer’s disease. / Dementia and Geriatric Cognitive Disorders, / 18, 120-24. CrossRef
    10. Mountjoy, C. Q. (1988). Dementia and the Hachinski Scale. / British Journal of Hospital Medicine, / 39, 254.
    11. Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., et al. (2007). Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria. / Lancet Neurology, / 6, 734-46. CrossRef
    12. Price, J. L., & Morris, J. C. (1999). Tangles and plaques in nondemented aging and “preclinical-Alzheimer’s disease. / Annals of Neurology, / 45, 358-68. CrossRef
    13. Silverman, D. H., Truong, C. T., Kim, S. K., Chang, C. Y., Chen, W., Kowell, A. P., et al. (2003). Prognostic value of regional cerebral metabolism in patients undergoing dementia evaluation: comparison to a quantifying parameter of subsequent cognitive performance and to prognostic assessment without PET. / Molecular Genetics and Metabolism, / 80, 350-55. CrossRef
    14. Weaver, J. D., Espinoza, R., & Weintraub, N. T. (2007). The utility of PET brain imaging in the initial evaluation of dementia. / Journal of the American Medical Directors Association, / 8, 150-57. CrossRef
    15. Edison, P., Archer, H. A., Hinz, R., Hammers, A., Pavese, N., Tai, Y. F., et al. (2007). Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. / Neurology, / 68, 501-08. CrossRef
    16. Mathis, C. A., Wang, Y., Holt, D. P., Huang, G. F., Debnath, M. L., & Klunk, W. E. (2003). Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. / Journal of Medicinal Chemistry, / 46, 2740-754. CrossRef
    17. Maetzler, W., Liepelt, I., Reimold, M., Reischl, G., Solbach, C., Becker, C., et al. (2009). Cortical PIB binding in Lewy body disease is associated with Alzheimer-like characteristics. / Neurobiology of Diseases, / 34, 107-12. CrossRef
    18. Rabinovici, G. D., Furst, A. J., O’Neil, J. P., Racine, C. A., Mormino, E. C., Baker, S. L., et al. (2007). 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. / Neurology, / 68, 1205-212. CrossRef
    19. Lockhart, A., Lamb, J. R., Osredkar, T., Sue, L. I., Joyce, J. N., Ye, L., et al. (2007). PIB is a non-specific imaging marker of amyloid-beta (Abeta) peptide-related cerebral amyloidosis. / Brain, / 130, 2607-615. CrossRef
  • 作者单位:Jianjun Jia (1)
    Binbin Sun (2)
    Zhe Guo (3)
    Jinming Zhang (3)
    Jiahe Tian (3)
    Hongchuan Tang (1)
    Luning Wang (1)

    1. Department of Geriatric Neurology, PLA General Hospital, Beijing, China
    2. Department of Neurology, Affiliated Hospital for Academy of Military Medical Sciences, Beijing, China
    3. Department of Nuclear Medicine, PLA General Hospital, Beijing, China
文摘
In order to evaluate the role of positron emission tomography (PET) with N-methyl-[11C]-2-(4-methylaminophenyl)-6-hydroxybenzothiazole, also known as Pittsburgh compound B (PIB), in the early diagnosis of Alzheimer’s disease (AD). Clinical data were collected, and PIB PET cerebral imaging was performed in patients with AD (n?=?6), mild cognitive impairment (MCI) (n?=?7), and elderly, mentally normal controls (NCs) (n?=?7). PET images of the subjects were then analyzed. Visual analysis showed that the radioactivity clearance rate in AD patients was significantly different from that found in the NC group. Furthermore, the radioactivity clearance rate 45?min after PIB injection was significantly lower than the NC group. Images from the MCI group presented heterogeneous results, overlapping with those from both the AD and NC groups. Statistical analysis showed that the radioactivity clearance rate during 5-5?min post-injection was significantly lower in the AD group (41-7%) than the control group (75-1%) (P?>?0.05) and the MCI group (59-7%). The radioactivity clearance rate in the bilateral parietal lobes, frontal, temporal, and right occipital lobes, and the bilateral corpora striata in MCI group were lower than that in control group (P?<?0.05). PIB PET brain imaging can differentiate early AD patients from NCs and may have certain value in identifying patients progressing to MCI.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700