Synthesis, characterization and size control of zerovalent iron nanoparticles anchored on montmorillonite
详细信息    查看全文
  • 作者:MingDe Fan (1) (2)
    Peng Yuan (1)
    TianHu Chen (3)
    HongPing He (1)
    AiHua Yuan (4)
    KangMin Chen (5)
    JianXi Zhu (1)
    Dong Liu (1) (6)
  • 关键词:zerovalent iron nanoparticles ; montmorillonite ; core ; shell structured ; chemical solution reduction
  • 刊名:Chinese Science Bulletin
  • 出版年:2010
  • 出版时间:April 2010
  • 年:2010
  • 卷:55
  • 期:11
  • 页码:1092-1099
  • 全文大小:2347KB
  • 参考文献:1. L贸pez-L贸pez M T, G贸mez-Ram铆rez A, Dur谩n J D G, et al. Preparation and characterization of iron-based magnetorheological fluids stabilized by addition of oganoclay prticles. Langmuir, 2008, 24: 7076鈥?084 CrossRef
    2. Stuckey D J, Carr C A, Martin-Rendon E, et al. Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells, 2006, 24: 1968鈥?975 CrossRef
    3. Hayashi K, Ohsugi M, Kamigaki M, et al. Functional effects of carbon-coated iron metal particles for magnetic recording media. Electrochem Solid-State Lett, 2002, 5: J9鈥揓12 CrossRef
    4. Guczia L, Steflerb G, Gesztia O, et al. CO hydrogenation over cobalt and iron catalysts supported over multiwall carbon nanotubes: Effect of preparation. J Catal, 2006, 244: 24鈥?2 CrossRef
    5. Wang C B, Zhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol, 1997, 31: 2154鈥?156 CrossRef
    6. Ponder S M, Darab J G, Mallouk T E, et al. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol, 2000, 34: 2564鈥?569 CrossRef
    7. Wilkin R, McNeil M S. Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage. Chemosphere, 2003, 53: 715鈥?25 CrossRef
    8. Sun Y P, Li X Q, Cao J, et al. Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci, 2006, 120: 47鈥?6 CrossRef
    9. Rodrigues A R, Soares J M, Machado F L A, et al. Synthesis of 伪-Fe particles using a modified metal-membrane incorporation technique. J Magn Magn Mater, 2007, 310: 2497鈥?499 CrossRef
    10. Zhang L, Manthiram A. Ambient temperature synthesis of fine metal particles in montmorillonite clay and their magnetic properties. Nanostruct Mater, 1996, 7: 437鈥?51 CrossRef
    11. Balakrishnan S, Bonder M J, Hadjipanayis G C. Particle size effect on phase and magnetic properties of polymer-coated magnetic nanoparticles. J Magn Magn Mater, 2009, 321: 117鈥?22 CrossRef
    12. Kuhn L T, Bojesen A, Timmermann L, et al. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles. J Phys Condes Matter, 2002, 14: 13551鈥?3567 CrossRef
    13. Carpenter E E, Calvin S, Stroud R M, et al. Passivated iron as core-shell nanoparticles. Chem Mater, 2003, 15: 3245鈥?246 CrossRef
    14. Shafranovsky E A, Petrov Yu I. Aerosol Fe nanoparticles with the passivating oxide shell. J Nanopart Res, 2004, 6: 71鈥?0 CrossRef
    15. Wang C M, Baer D R, Thomas L E, et al. Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature. J Appl Phys, 2005, 98: 094308鈥?94307 CrossRef
    16. Mahajan D, Desai A, Rafailovich M, et al. Synthesis and characterization of nanosized metals embedded in polystyrene matrix. Composites Part B, 2006, 37: 74鈥?0 CrossRef
    17. Pal T, Sau T K, Jana N R. Reversible formation and dissolution of silver nanoparticles in aqueous surfactant media. Langmuir, 1997, 13: 1481鈥?485 CrossRef
    18. Niu Y, Crooks R M. Dendrimer-encapsulated metal nanoparticles and their applications to catalysis. C R Chimie, 2003, 6: 1049鈥?059
    19. Najman R, Cho J K, Coffey A F, et al. Entangled palladium nanoparticles in resin plugs. Chem Commun, 2007, 47: 5031鈥?033 CrossRef
    20. Calla J T, Davis R J. Investigation of alumina-supported Au catalyst for CO oxidation by isotopic transient analysis and X-ray absorption spectroscopy. J Phys Chem B, 2005, 109: 2307鈥?314 CrossRef
    21. Carrettin S, McMorn P, Johnston P, et al. Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem Commun, 2002, 7: 696鈥?97 CrossRef
    22. Moreno M S, Weyland M, Midgley P A, et al. Highly anisotropic distribution of iron nanoparticles within MCM-41 mesoporous silica. Micron, 2006, 37: 52鈥?6 CrossRef
    23. Manikandan D, Divakar D, Sivakumar T. Utilization of clay minerals for developing Pt nanoparticles and their catalytic activity in the selective hydrogenation of cinnamaldehyde. Catal Commun, 2007, 8: 1781鈥?786 CrossRef
    24. Yuan P, Fan M D, Yang D, et al. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. J Hazard Mater, 2009, 166: 821鈥?29 CrossRef
    25. Papp S, Szel J, Oszko A, et al. Synthesis of polymer-stabilized nanosized rhodium particles in the interlayer space of layered silicates. Chem Mater, 2004, 16: 1674鈥?685 CrossRef
    26. Kir谩ly Z, D茅k谩ny I, Mastalir 脕, et al. In situ generation of palladium nanoparticles in smectite clays. J Catal, 1996, 161: 401鈥?08 CrossRef
    27. Pinnavaia T J. Intercalated clay catalysts. Science, 1983, 220: 365鈥?71 CrossRef
    28. Paek S M, Jang J U, Hwang S J, et al. Exfoliation-restacking route to Au nanoparticle-clay nanohybrids. J Phys Chem Solids, 2006, 67: 1020鈥?023 CrossRef
    29. Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298: 2176鈥?179 CrossRef
    30. Bergaya F, Theng B K J, Lagaly G. Handbook of Olay Science. Amsterdam/London: Elsevier, 2006
    31. Chen B, Evans J R G. Preferential intercalation in polymer-clay nanocomposites. J Phys Chem B, 2004, 108: 14986鈥?4990 CrossRef
    32. Mackenzie R C. A micromethod for determination of CEC of clay. J Colloid Sci, 1951, 6, 219鈥?22
    33. Huang K C, Ehrman S H. Synthesis of iron nanoparticles via chemical reduction with palladium ion seeds. Langmuir, 2007, 23: 1419鈥?426 CrossRef
    34. Huang K C, Chou K S. Microstructure changes to iron nanoparticles during discharge/charge cycles. Electrochem Commun, 2007, 9: 1907鈥?912 CrossRef
    35. Aihara N, Torigoe K, Esumi K. Preparation and characterization of gold and silver nanoparticles in layered Laponite suspensions. Langmuir, 1998, 14: 4945鈥?949 CrossRef
    36. Fung K K, Qin B X, Zhang X X. Passivation of 伪-Fe nanoparticle by epitaxial 纬-Fe2O3 shell. Mater Sci Eng A, 2000, 286: 135鈥?38 CrossRef
    37. Kir谩ly Z, Veisz B, Mastalir 脕, et al. Preparation of ultrafine palladium particles on cationic and anionic clays, mediated by oppositely charged surfactants: Catalytic probes in hydrogenations. Langmuir, 2001, 17: 5381鈥?387 CrossRef
  • 作者单位:MingDe Fan (1) (2)
    Peng Yuan (1)
    TianHu Chen (3)
    HongPing He (1)
    AiHua Yuan (4)
    KangMin Chen (5)
    JianXi Zhu (1)
    Dong Liu (1) (6)

    1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
    2. College of Environment and Resources, Inner Mongolia University, Hohhot, 010021, China
    3. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
    4. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
    5. School of Materials Science an Engineering, Jiangsu University, Zhenjian, 212003, China
    6. Graduate School of the Chinese Academy of Sciences, Beijing, 100039, China
  • ISSN:1861-9541
文摘
Zerovalent iron nanoparticles have been successfully synthesized using sodium borohydride solution reduction of ferric trichloride hexahydrate in the presence of montmorillonite as an effective protective reagent and support as well. A combination of characterizations reveals that with high monodispersity these obtained iron nanoparticles are well dispersed on clay surface, virginal from boron related impurity, and oxidation resistant well with iron core-iron oxide shell structure. The shell thickness of 3 nm remains almost invariable under ambient conditions. The size control of these iron nanoparticles has been achieved by tailoring the amount of the ferric iron, which mainly depends on the protective action of montmorillonite.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700