Inferring Gene Regulatory Networks from Multiple Data Sources Via a Dynamic Bayesian Network with Structural EM
详细信息    查看全文
文摘
Using our dynamic Bayesian network with structural Expectation Maximization (SEM-DBN), we develop a new framework to model gene regulatory network from both gene expression data and transcriptional factor binding site data. Only based on mRNA expression data, it is not enough to accurately estimate a gene network. It is difficult for us to estimate a gene network accurately only with the mRNA expression data. In this paper, we use the transcription factor binding location data in order to introduce the prior knowledge to SEM-DBN model. Gene expression data are also exploited specifically for likelihood. Meanwhile, we incorporate the prior knowledge into every learning step by SEM rather than only learning from the very beginning, which can compensate the attenuation of the effect with location data. The effectiveness of our proposed method is demonstrated through the analysis of Saccharomyces cerevisiae cell cycle data. The combination of heterogeneous data from multiple sources ensures that our results are more accurate than those recovered from only gene expression data alone.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700