Promoting remyelination for the treatment of multiple sclerosis: opportunities and challenges
详细信息    查看全文
  • 作者:Yueting Zhang (11317)
    Taylor B. Guo (11317)
    Hongtao Lu (11317)
  • 关键词:multiple sclerosis ; myelination ; neurodegeneration ; oligodendrocytes ; disease progression ; disease modifying therapy ; drug target ; animal models
  • 刊名:Neuroscience Bulletin
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:29
  • 期:2
  • 页码:144-154
  • 全文大小:272KB
  • 参考文献:1. Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Br眉ck W. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 2008, 131:1749鈥?758. CrossRef
    2. Wolswijk G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 1998, 18:601鈥?09.
    3. Chang A, Tourtellotte W, Rudick R, Trapp B. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 2002, 346:165鈥?73. CrossRef
    4. Weiner H. A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. J Neurol 2008, 255: 3鈥?1. CrossRef
    5. Lucchinetti C, Br眉ck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Annals Neurol 2000, 47: 707鈥?17. CrossRef
    6. Xiao L, Guo D, Hu C, Shen W, Shan L, Li C, / et al. Diosgenin promotes oligodendrocyte progenitor cell differentiation through estrogen receptor-mediated ERK1/2 activation to accelerate remyelination. Glia 2012, 60: 1037鈥?052. CrossRef
    7. Silvestroff L, Bartucci S, Pasquini J, Franco P. Cuprizoneinduced demyelination in the rat cerebral cortex and thyroid hormone effects on cortical remyelination. Exp Neurol 2012, 235: 357鈥?67. CrossRef
    8. Franco P, Silvestroff L, Soto E, Pasquini J. Thyroid hormones promote differentiation of oligodendrocyte progenitor cells and improve remyelination after cuprizone-induced demyelination. Exp Neurol 2008, 212: 458鈥?67. CrossRef
    9. Raff M, Lillien L, Richardson W, Burne J, Noble M. Platelet derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature 1988, 333: 562鈥?65. CrossRef
    10. Watkins T, Emery B, Mulinyawe S, Barres B. Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 2008, 60: 555鈥?69. CrossRef
    11. Jeffery N, Blakemore W. Remyelination of mouse spinal cord axons demyelinated by local injection of lysolecithin. J Neurocytol 1995, 24: 775鈥?81. CrossRef
    12. Matsushima G, Morell P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 2001, 11: 107鈥?16. CrossRef
    13. Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ, Kelsh RN, / et al. In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci 2006, 9: 1506鈥?511. CrossRef
    14. Lyons DA, Naylor SG, Scholze A, Talbot WS. Kif1b is essential for mRNA localization in oligodendrocytes and development of myelinated axons. Nat Genet 2009, 41: 854鈥?58. CrossRef
    15. Harsan L, Steibel J, Zaremba A, Agin A, Sapin R, Poulet P, / et al. Recovery from chronic demyelination by thyroid hormone therapy: myelinogenesis induction and assessment by diffusion tensor magnetic resonance imaging. J Neurosci 2008, 28: 14189鈥?4201. CrossRef
    16. Kondo T, Raff M. Basic helix-loop-helix proteins and the timing of oligodendrocyte differentiation. Development 2000, 127: 2989鈥?998.
    17. Lu Q, Sun T, Zhu Z, Ma N, Garcia M, Stiles C, / et al. Common developmental requirement for olig function indicates a motor neuron/oligodendrocyte connection. Cell 2002, 109: 75鈥?6. CrossRef
    18. Lu QR, Park JK, Noll E, Chan JA, Alberta J, Yuk D, / et al. oligodendrocyte lineage genes ( / OLIG) as molecular markers for human glial brain tumors. Proc Natl Acad Sci U S A 2001, 98: 10851鈥?0856. CrossRef
    19. Qi Y, Cai J, Wu Y, Wu R, Lee J, Fu H, / et al. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 2001, 128: 2723鈥?733.
    20. Zhou Q, Wang S, Anderson DJ. Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 2000, 25: 331鈥?43. CrossRef
    21. He Y, Dupree J, Wang J, Sandoval J, Li J, Liu H, / et al. The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron 2007, 55: 217鈥?30. CrossRef
    22. Finzsch M, Stolt CC, Lommes P, Wegner M. Sox9 and Sox10 influence survival and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor alpha expression. Development 2008, 135: 637鈥?46. CrossRef
    23. Wang S, Dulin J, Wu H, Hurlock E, Lee S, Jansson K, / et al. An oligodendrocyte-specific zinc-finger transcription regulator cooperates with olig2 to promote oligodendrocyte differentiation. Development 2006, 133: 3389鈥?398. CrossRef
    24. Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC, Mulinyawe SB, / et al. Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 2009, 138: 172鈥?85. CrossRef
    25. Shen YH, Avila RL, Emery B, Traka M, Lin W, Watkins T, / et al. Zfp191 is required by oligodendrocytes for CNS myelination. Genes Dev 2010, 24: 301鈥?11. CrossRef
    26. Chen Y, Wu H, Wang S, Koito H, Li J, Ye F, / et al. The oligodendrocyte-specific G protein-coupled receptor Gpr17 is a cell-intrinsic timer of myelination. Nat Neurosci 2009, 12: 1398鈥?406. CrossRef
    27. Koenning M, Jackson S, Hay CM, Faux C, Kilpatrick TJ, Willingham M, / et al. Myelin gene regulatory factor is required for maintenance of myelin and mature oligodendrocyte identity in the adult CNS. J Neurosci 2012, 32: 12528鈥?2542. CrossRef
    28. Huang J, Jarjour A, Oumesmar B, Kerninon C, Williams A, Krezel W, / et al. Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci 2011, 14: 45鈥?5. CrossRef
    29. Xin M, Yue T, Ma Z, Wu FF, Gow A, Lu QR. Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in olig1-null mice. J Neurosci 2005, 25: 1354鈥?365. CrossRef
    30. Lecca D, Trincavelli ML, Gelosa P, Sironi L, Ciana P, Fumagalli M, / et al. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS One 2008, 3: 1鈥?5. CrossRef
    31. Fumagalli M, Daniele S, Lecca D, Lee P, Parravicini C, Fields R, / et al. Phenotypic changes, signaling pathway, and functional correlates of GPR17-expressing neural precursor cells during oligodendrocyte differentiation. J Biol Chem 2011, 286: 10593鈥?0604. CrossRef
    32. Ceruti S, Vigan貌 F, Boda E, Ferrario S, Magni G, Boccazzi M, / et al. Expression of the new P2Y-like receptor GPR17 during oligodendrocyte precursor cell maturation regulates sensitivity to ATP-induced death. Glia 2011, 59: 363鈥?78. CrossRef
    33. Wang S, Sdrulla AD, diSibio G, Bush G, Nofziger D, Hicks C, / et al. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 1998, 21: 63鈥?5. CrossRef
    34. Hu QD, Ang BT, Karsak M, Hu WP, Cui XY, Duka T, / et al. F3/ contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 2003, 115: 163鈥?75. CrossRef
    35. John G, Shanker S, Shafit-Zagardo B, Massimi A, Lee SC, Raine CS, / et al. Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 2002, 8: 1115鈥?121. CrossRef
    36. Zhang Y, Argaw AT, Gurfein BT, Zameer A, Snyder BJ, Ge C, / et al. Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination. Proc Natl Acad Sci U S A 2009, 106: 19162鈥?9167. CrossRef
    37. Stidworthy MF, Genoud S, Li WW, Leone DP, Mantei N, Suter U, / et al. Notch1 and Jagged1 are expressed after CNS demyelination, but are not a major rate-determining factor during remyelination. Brain 2004, 127: 1928鈥?941. CrossRef
    38. Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, / et al. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 2009, 23: 1571鈥?585. CrossRef
    39. Ye F, Chen Y, Hoang T, Montgomery R, Zhao X, Bu H, / et al. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting 尾-Catenin-TCF interaction. Nat Neurosci 2009, 12: 829鈥?38. CrossRef
    40. Fancy S, Harrington E, Yuen T, Silbereis J, Zhao C, Baranzini S, / et al. Axin2 as regulatory and therapeutic target in new born brain injury and remyelination. Nat Neurosci 2011, 14: 1009鈥?016. CrossRef
    41. Gross R, Mehler M, Mabie P, Zang Z, Santschi L, Kessler J. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 1996, 17: 595鈥?06. CrossRef
    42. Samanta J, Kessler J. Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 2004, 131: 4131鈥?142. CrossRef
    43. Sabo J, Aumann T, Merlo D, Kilpatrick T, Cate H. Remyelination is altered by bone morphogenic protein signaling in demyelinated lesions. J Neurosci 2011, 31: 4504鈥?510. CrossRef
    44. Cate H, Sabo J, Merlo D, Kemper D, Aumann T, Robinson J, / et al. Modulation of bone morphogenic protein signalling alters numbers of astrocytes and oligodendroglia in the subventricular zone during cuprizone-induced demyelination. J Neurochem 2010, 115: 11鈥?2. CrossRef
    45. Wu M, Hernandez M, Shen S, Sabo JK, Kelkar D, Wang J, / et al. Differential modulation of the oligodendrocyte transcriptome by sonic hedgehog and bone morphogenetic protein 4 via opposing effects on histone acetylation. J Neurosci 2012, 32: 6651鈥?664. CrossRef
    46. Cheng X, Wang Y, He Q, Qiu M, Whittemore SR, Cao Q. Bone morphogenetic protein signaling and olig1/2 interact to regulate the differentiation and maturation of adult oligodendrocyte precursor cells. Stem Cells 2007, 25: 3204鈥?214. CrossRef
    47. Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, / et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 2004, 7: 221鈥?28. CrossRef
    48. Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, / et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 2005, 8: 745鈥?51. CrossRef
    49. Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, / et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med 2007, 10: 1228鈥?233. CrossRef
    50. Lee X, Yang Z, Shao Z, Rosenberg SS, Levesque M, Pepinsky RB, / et al. NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination. J Neurosci 2007, 27: 220鈥?25. CrossRef
    51. Zhao XH, Jin WL, Ju G. An / in vitro study on the involvement of LINGO-1 and Rho GTPases in Nogo-A regulated differentiation of oligodendrocyte precursor cells. Mol Cell Neurosci 2007, 36: 260鈥?69. CrossRef
    52. Mi S, Miller R, Tang W, Lee X, Hu B, Wu W, / et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Annals Neurol 2009, 65: 304鈥?15. CrossRef
    53. Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H. TROY and LINGO-1 expression in astrocytes and macrophages/ microglia in multiple sclerosis lesions. Neuropathol Appl Neurobiol 2007, 33: 99鈥?07. CrossRef
    54. Maness P, Schachner M. Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 2007, 10: 19鈥?7. CrossRef
    55. Trotter J, Bitter-Suermann D, Schachner M. Differentiation-regulated loss of the polysialylated embryonic form and expression of the different polypeptides of the neural cell adhesion molecule by cultured oligodendrocytes and myelin. J Neurosci Res 1989, 22: 369鈥?83. CrossRef
    56. Seki T, Arai Y. Expression of highly polysialylated NCAM in the neocortex and piriform cortex of the developing and the adult rat. Anat Embryol (Berl) 1991, 184: 395鈥?01. CrossRef
    57. Seki T, Arai Y. Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci Res 1993, 17: 265鈥?90. CrossRef
    58. Oumesmar BN, Vignais L, Duhamel-Clerin E, Avellana-Adalid V, Rougon G, Baron-Van Evercooren A. Expression of the highly polysialylated neural cell adhesion molecule during postnatal myelination and following chemically induced demyelination of the adult mouse spinal cord. Eur J Neurosci 1995, 7: 480鈥?91. CrossRef
    59. Charles P, Hernandez MP, Stankoff B, Aigrot MS, Colin C, Rougon G, / et al. Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc Natl Acad Sci U S A 2000, 97: 7585鈥?590. CrossRef
    60. Fewou SN, Ramakrishnan H, Bussow H, Gieselmann V, Eckhardt M. Down-regulation of polysialic acid is required for efficient myelin formation. J Biol Chem 2007, 282: 16700鈥?6711. CrossRef
    61. Charles P, Reynolds R, Seilhean D, Rougon G, Aigrot MS, Niezgoda A, / et al. Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain 2002, 125:1972鈥?979. CrossRef
    62. Laursen L, Chan C, Ffrench-Constant C. An integrin-contactin complex regulates CNS myelination by differential Fyn phosphorylation. J Neurosci 2009, 29: 9174鈥?185. CrossRef
    63. White R, Gonsior C, Kr盲mer-Albers E, St枚hr N, H眉ttelmaier S, Trotter J. Activation of oligodendroglial Fyn kinase enhances translation of mRNAs transported in hnRNP A2-dependent RNA granules. J Cell Biol 2009, 181: 579鈥?86. CrossRef
    64. Kubasak MD, Hedlund E, Roy RR, Carpenter EM, Edgerton VR, Phelps PE. L1 CAM expression is increased surrounding the lesion site in rats with complete spinal cord transection as neonates. Exp Neurol 2005, 194(2): 363鈥?75. CrossRef
    65. Martini R, Schachner M. immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve. J Cell Biol 1988, 106: 1735鈥?746. CrossRef
    66. Roonprapunt C, Huang W, Grill R, Friedlander D, Grumet M, Chen S, / et al. Soluble cell adhesion molecule L1-Fc promotes locomotor recovery in rats after spinal cord injury. J Neurotrauma 2003, 20: 871鈥?82. CrossRef
    67. Xu G, Nie DY, Wang WZ, Zhang PH, Shen J, Ang BT, / et al. optic nerve regeneration in polyglycolic acid-chitosan conduits coated with recombinant L1-Fc. Neuroreport 2004, 15: 2167鈥?172. CrossRef
    68. Zhang Y, Bo X, Schoepfer R, Holtmaat AJ, Verhaagen J, Emson PC, / et al. Growth-associated protein GAP-43 and L1 act synergistically to promote regenerative growth of Purkinje cell axons / in vivo. Proc Natl Acad Sci U S A 2005, 102: 14883鈥?4888. CrossRef
    69. Schmidt F, Eijnden M, Gobert R, Saborio G, Carboni S, Alliod C, / et al. Identification of VHY/Dusp15 as a regulator of oligodendrocyte differentiation through a systematic genomics approach. PLoS One 2012, 7: e40457. CrossRef
    70. Bernard F, Moreau-Fauvarque C, Heitz-Marchaland C, Zagar Y, Dumas L, Fouquet S, / et al. Role of transmembrane semaphorin Sema6A in oligodendrocyte differentiation and myelination. Glia 2012, 60: 1590鈥?04. CrossRef
    71. Fancy S, Glasgow S, Finley M, Rowitch D, Deneen B. Evidence that nuclear factor IA inhibits repair after white matter injury. Annals Neurol 2012, 72: 224鈥?33. CrossRef
    72. Kuboyama K, Fujikawa A, Masumura M, Suzuki R, Matsumoto M, Noda M. Protein tyrosine phosphatase receptor type z negatively regulates oligodendrocyte differentiation and myelination. PLoS One 2012, 7: e48797. CrossRef
    73. B枚 L, Vedeler CA, Nyland HI, Trapp BD, M枚k SJ. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 2003, 62: 723鈥?32.
    74. Peterson JW, B枚 L, M枚k S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 2001, 50: 389鈥?00. CrossRef
    75. Kutzelnigg A, Lucchinetti CF, Stadekmann C, Br眉ck W, Rauschka H, Bergmann M, / et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005, 128: 2705鈥?712. CrossRef
    76. Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, / et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 2011, 365: 2188鈥?197. CrossRef
    77. Howell O, Reeves C, Nicholas R, Carassiti D, Radotra B, Gentleman S, / et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 2011, 134: 2755鈥?771. CrossRef
    78. Victora GD, Nussenzweig MC. Germinal centers. Annu Rev immunol 2012, 30: 429鈥?57. CrossRef
    79. Han M, Huwang S, Roy D, Lundgren D, Price J, Ousman S, / et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 2008, 451: 1076鈥?081. CrossRef
    80. MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D. / In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 1994, 31: 673鈥?77. CrossRef
    81. Narayanan S, Francis SJ, Sled JG, Santos AC, Antel S, Levesque I, / et al. Axonal injury in the cerebral normalappearing white matter of patients with multiple sclerosis is related to concurrent demyelination in lesions but not to concurrent demyelination in normal-appearing white matter. Neuroimage 2006, 29: 637鈥?42. CrossRef
    82. Stankoff B, Freeman L, Aigrot MS, Chardain A, Dolle F, Williams A, / et al. imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-(1)(1)C]-2-(4鈥?methylaminophenyl)-6-hydroxybenzothiazole. Ann Neurol 2011, 69: 673鈥?80. CrossRef
    83. Stankoff B, Wang Y, Bottlaender M, Aigrot MS, Dolle F, Wu C, / et al. Imaging of CNS myelin by positron-emission tomography. Proc Natl Acad Sci U S A 2006, 103: 9304鈥?309. CrossRef
    84. Joubert L, Foucault I, Sagot Y, Bernasconi L, Duval F, Alliod C, / et al. Chemical inducers and transcriptional markers of oligodendrocyte differentiation. J Neurosci Res 2010, 88: 2546鈥?557.
    85. Taupin P. Thirteen compounds promoting oligodendrocyte progenitor cell differentiation and remyelination for treating multiple sclerosis: WO2010054307. Expert Opin Ther Pat 2010, 20: 1767鈥?773. CrossRef
  • 作者单位:Yueting Zhang (11317)
    Taylor B. Guo (11317)
    Hongtao Lu (11317)

    11317. Neuroimmunology Discovery Performance Unit, GlaxoSmithKline Research and Development Center, Shanghai, China
  • ISSN:1995-8218
文摘
Multiple sclerosis (MS) is a chronic and devastating autoimmune demyelinating disease of the central nervous system. With the increased understanding of the pathophysiology of this disease in the past two decades, many disease-modifying therapies that primarily target adaptive immunity have been shown to prevent exacerbations and new lesions in patients with relapsing-remitting MS. However, these therapies only have limited efficacy on the progression of disability. Increasing evidence has pointed to innate immunity, axonal damage and neuronal loss as important contributors to disease progression. Remyelination of denuded axons is considered an effective way to protect neurons from damage and to restore neuronal function. The identification of several key molecules and pathways controlling the differentiation of oligodendrocyte progenitor cells and myelination has yielded clues for the development of drug candidates that directly target remyelination and neuroprotection. The long-term efficacy of this strategy remains to be evaluated in clinical trials. Here, we provide an overview of current and emerging therapeutic concepts, with a focus on the opportunities and challenges for the remyelination approach to the treatment of MS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700