Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs
详细信息    查看全文
  • 作者:Wilma T. Steegenga (1)
    Mark V. Boekschoten (1)
    Carolien Lute (1)
    Guido J. Hooiveld (1)
    Philip J. de Groot (1)
    Tiffany J. Morris (2)
    Andrew E. Teschendorff (3)
    Lee M. Butcher (2)
    Stephan Beck (2)
    Michael Müller (1)
  • 关键词:Molecular aging ; Epigenetics ; DNA methylation ; Gene expression ; PBMCs ; Epigenetic biomarkers of aging
  • 刊名:AGE
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:36
  • 期:3
  • 全文大小:783 KB
  • 参考文献:1. Aoi Y, Nakahama K, Morita I, Safronova O (2011) The involvement of DNA and histone methylation in the repression of IL-1beta-induced MCP-1 production by hypoxia. Biochem Biophys Res Commun 414(1):252-58. doi:10.1016/j.bbrc.2011.09.066 j.bbrc.2011.09.066" target="_blank" title="It opens in new window">CrossRef
    2. Armstrong L (2012) Epigenetic control of embryonic stem cell differentiation. Stem Cell Rev 8(1):67-7. doi:10.1007/s12015-011-9300-4 CrossRef
    3. Barres R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, Krook A, O'Gorman DJ, Zierath JR (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15(3):405-11. doi:10.1016/j.cmet.2012.01.001 j.cmet.2012.01.001" target="_blank" title="It opens in new window">CrossRef
    4. Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A, Rossi DJ (2013) Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12(4):413-25. doi:10.1016/j.stem.2013.01.017 j.stem.2013.01.017" target="_blank" title="It opens in new window">CrossRef
    5. Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D, Mangino M, Zhai G, Zhang F, Valdes A, Shin SY, Dempster EL, Murray RM, Grundberg E, Hedman AK, Nica A, Small KS, Mu TC, Dermitzakis ET, McCarthy MI, Mill J, Spector TD, Deloukas P (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet 8(4):e1002629. doi:10.1371/journal.pgen.1002629 journal.pgen.1002629" target="_blank" title="It opens in new window">CrossRef
    6. Berdyshev GD, Korotaev GK, Boiarskikh GV, Vaniushin BF (1967) Nucleotide composition of DNA and RNA from somatic tissues of humpback and its changes during spawning. Biokhimiia 32(5):988-93
    7. Bhutani N, Burns DM, Blau HM (2011) DNA demethylation dynamics. Cell 146(6):866-72. doi:10.1016/j.cell.2011.08.042 j.cell.2011.08.042" target="_blank" title="It opens in new window">CrossRef
    8. Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, Horvath S, Vilain E (2011) Epigenetic predictor of age. PLoS ONE 6(6):e14821. doi:10.1371/journal.pone.0014821 journal.pone.0014821" target="_blank" title="It opens in new window">CrossRef
    9. Bork S, Pfister S, Witt H, Horn P, Korn B, Ho AD, Wagner W (2010) DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell 9(1):54-3. doi:10.1111/j.1474-9726.2009.00535.x j.1474-9726.2009.00535.x" target="_blank" title="It opens in new window">CrossRef
    10. Bouwens M, Afman LA, Muller M (2008) Activation of peroxisome proliferator-activated receptor alpha in human peripheral blood mononuclear cells reveals an individual gene expression profile response. BMC Genomics 9:262. doi:10.1186/1471-2164-9-262 CrossRef
    11. Cantone I, Fisher AG (2013) Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 20(3):282-89. doi:10.1038/nsmb.2489 CrossRef
    12. Cedar H, Bergman Y (2011) Epigenetics of haematopoietic cell development. Nat Rev Immunol 11(7):478-88. doi:10.1038/nri2991 CrossRef
    13. Chinn IK, Blackburn CC, Manley NR, Sempowski GD (2012) Changes in primary lymphoid organs with aging. Semin Immunol 24(5):309-20. doi:10.1016/j.smim.2012.04.005 j.smim.2012.04.005" target="_blank" title="It opens in new window">CrossRef
    14. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh RF, Wiencke JK, Kelsey KT (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5(8):e1000602. doi:10.1371/journal.pgen.1000602 journal.pgen.1000602" target="_blank" title="It opens in new window">CrossRef
    15. Dai MH, Wang PL, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, Watson SJ, Meng F (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Research 33 (20). doi:ARTN e175. DOI 10.1093/nar/gni179
    16. D'Aquila P, Rose G, Bellizzi D, Passarino G (2013) Epigenetics and aging. Maturitas 74(2):130-36. doi:10.1016/j.maturitas.2012.11.005 j.maturitas.2012.11.005" target="_blank" title="It opens in new window">CrossRef
    17. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12-7. doi:10.1016/j.cell.2012.06.013 j.cell.2012.06.013" target="_blank" title="It opens in new window">CrossRef
    18. Dawson PA, Lan T, Rao A (2009) Bile acid transporters. J Lipid Res 50(12):2340-357. doi:10.1194/jlr.R900012-JLR200 jlr.R900012-JLR200" target="_blank" title="It opens in new window">CrossRef
    19. Doig CL, Singh PK, Dhiman VK, Thorne JL, Battaglia S, Sobolewski M, Maguire O, O'Neill LP, Turner BM, McCabe CJ, Smiraglia DJ, Campbell MJ (2012) Recruitment of NCOR1 to VDR target genes is enhanced in prostate cancer cells and associates with altered DNA methylation patterns. Carcinogenesis. doi:10.1093/carcin/bgs331
    20. Dormoy V, Jacqmin D, Lang H, Massfelder T (2012) From development to cancer: lessons from the kidney to uncover new therapeutic targets. Anticancer Res 32(9):3609-617
    21. Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, Lin SM (2010) Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinforma 11:587. doi:10.1186/1471-2105-11-587 CrossRef
    22. Fernandez AF, Assenov Y, Martin-Subero JI, Balint B, Siebert R, Taniguchi H, Yamamoto H, Hidalgo M, Tan AC, Galm O, Ferrer I, Sanchez-Cespedes M, Villanueva A, Carmona J, Sanchez-Mut JV, Berdasco M, Moreno V, Capella G, Monk D, Ballestar E, Ropero S, Martinez R, Sanchez-Carbayo M, Prosper F, Agirre X, Fraga MF, Grana O, Perez-Jurado L, Mora J, Puig S, Prat J, Badimon L, Puca AA, Meltzer SJ, Lengauer T, Bridgewater J, Bock C, Esteller M (2012) A DNA methylation fingerprint of 1628 human samples. Genome Res 22(2):407-19. doi:10.1101/gr.119867.110 CrossRef
    23. Florath I, Butterbach K, Muller H, Bewerunge-Hudler M, Brenner H (2013) Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet. doi:10.1093/hmg/ddt531
    24. Garagnani P, Bacalini MG, Pirazzini C, Gori D, Giuliani C, Mari D, Di Blasio AM, Gentilini D, Vitale G, Collino S, Rezzi S, Castellani G, Capri M, Salvioli S, Franceschi C (2012) Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell. doi:10.1111/acel.12005
    25. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128(4):635-38. doi:10.1016/j.cell.2007.02.006 j.cell.2007.02.006" target="_blank" title="It opens in new window">CrossRef
    26. Gowers IR, Walters K, Kiss-Toth E, Read RC, Duff GW, Wilson AG (2011) Age-related loss of CpG methylation in the tumour necrosis factor promoter. Cytokine 56(3):792-97. doi:10.1016/j.cyto.2011.09.009 j.cyto.2011.09.009" target="_blank" title="It opens in new window">CrossRef
    27. Hammoud SS, Cairns BR, Jones DA (2013) Epigenetic regulation of colon cancer and intestinal stem cells. Curr Opin Cell Biol. doi:10.1016/j.ceb.2013.01.007
    28. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K (2012) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. doi:10.1016/j.molcel.2012.10.016
    29. Hayashi M, Yamashita A, Shimizu K (1997) Somatostatin and brain-derived neurotrophic factor mRNA expression in the primate brain: decreased levels of mRNAs during aging. Brain Res 749(2):283-89. doi:10.1016/S0006-8993(96)01317-0 CrossRef
    30. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105(44):17046-7049. doi:10.1073/pnas.0806560105 CrossRef
    31. Hernandez DG, Nalls MA, Gibbs JR, Arepalli S, van der Brug M, Chong S, Moore M, Longo DL, Cookson MR, Traynor BJ, Singleton AB (2011) Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum Mol Genet 20(6):1164-172. doi:10.1093/hmg/ddq561 CrossRef
    32. Hervouet E, Nadaradjane A, Gueguen M, Vallette FM, Cartron PF (2012) Kinetics of DNA methylation inheritance by the Dnmt1-including complexes during the cell cycle. Cell Div 7:5. doi:10.1186/1747-1028-7-5 CrossRef
    33. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, Puca AA, Sayols S, Pujana MA, Serra-Musach J, Iglesias-Platas I, Formiga F, Fernandez AF, Fraga MF, Heath SC, Valencia A, Gut IG, Wang J, Esteller M (2012) Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A 109(26):10522-0527. doi:10.1073/pnas.1120658109 CrossRef
    34. Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K, van den Berg LH, Ophoff RA (2012) Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol 13(10):R97. doi:10.1186/gb-2012-13-10-r97 CrossRef
    35. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13. doi:Artn 86 Doi 10.1186/1471-2105-13-86
    36. Hu Q, Rosenfeld MG (2012) Epigenetic regulation of human embryonic stem cells. Front Genet 3:238. doi:10.3389/fgene.2012.00238
    37. Huidobro C, Fernandez AF, Fraga MF (2012) Aging epigenetics: causes and consequences. Mol Aspects Med. doi:10.1016/j.mam.2012.06.006
    38. Jakovcevski M, Akbarian S (2012) Epigenetic mechanisms in neurological disease. Nat Med 18(8):1194-204. doi:10.1038/nm.2828 CrossRef
    39. Johnson AA, Akman K, Calimport SR, Wuttke D, Stolzing A, de Magalhaes JP (2012) The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res 15(5):483-94. doi:10.1089/rej.2012.1324 j.2012.1324" target="_blank" title="It opens in new window">CrossRef
    40. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484-92. doi:10.1038/nrg3230 CrossRef
    41. Jurkowska RZ, Jurkowski TP, Jeltsch A (2011) Structure and function of mammalian DNA methyltransferases. Chem Biochem Eur J Chem Biol 12(2):206-22. doi:10.1002/cbic.201000195 CrossRef
    42. Kangaspeska S, Stride B, Metivier R, Polycarpou-Schwarz M, Ibberson D, Carmouche RP, Benes V, Gannon F, Reid G (2008) Transient cyclical methylation of promoter DNA. Nature 452(7183):112-15. doi:10.1038/nature06640 CrossRef
    43. Kersten S (2010) Regulation of nutrient metabolism and inflammation. Results Probl Cell Differ 52:13-5. doi:10.1007/978-3-642-14426-4_2 CrossRef
    44. Koch CM, Wagner W (2011) Epigenetic-aging-signature to determine age in different tissues. Aging (Albany NY) 3(10):1018-027
    45. Koch CM, Suschek CV, Lin Q, Bork S, Goergens M, Joussen S, Pallua N, Ho AD, Zenke M, Wagner W (2011) Specific age-associated DNA methylation changes in human dermal fibroblasts. PLoS ONE 6(2):e16679. doi:10.1371/journal.pone.0016679 journal.pone.0016679" target="_blank" title="It opens in new window">CrossRef
    46. Kulkarni SS, Salehzadeh F, Fritz T, Zierath JR, Krook A, Osler ME (2012) Mitochondrial regulators of fatty acid metabolism reflect metabolic dysfunction in type 2 diabetes mellitus. Metabolism 61(2):175-85. doi:10.1016/j.metabol.2011.06.014 j.metabol.2011.06.014" target="_blank" title="It opens in new window">CrossRef
    47. Lee CK, Klopp RG, Weindruch R, Prolla TA (1999) Gene expression profile of aging and its retardation by caloric restriction. Science 285(5432):1390-393 CrossRef
    48. Li-Byarlay H, Li Y, Stroud H, Feng S, Newman TC, Kaneda M, Hou KK, Worley KC, Elsik CG, Wickline SA, Jacobsen SE, Ma J, Robinson GE (2013) RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1310735110
    49. Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC (2008) Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. Br J Nutr 100(2):278-82. doi:10.1017/S0007114507894438 CrossRef
    50. Lin K, Kools H, de Groot PJ, Gavai AK, Basnet RK, Cheng F, Wu J, Wang X, Lommen A, Hooiveld GJ, Bonnema G, Visser RG, Muller MR, Leunissen JA (2011) MADMAX—management and analysis database for multiple omics experiments. J Integr Bioinforma 8(2):160. doi:10.2390/biecoll-jib-2011-160
    51. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429(6994):883-91. doi:10.1038/nature02661 CrossRef
    52. Lund J, Tedesco P, Duke K, Wang J, Kim SK, Johnson TE (2002) Transcriptional profile of aging in C. elegans. Curr Biol 12(18):1566-573 CrossRef
    53. Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J, Zhang N, Liang S, Donehower LA, Issa JP (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20(3):332-40. doi:10.1101/gr.096826.109 CrossRef
    54. Maksimovic J, Gordon L, Oshlack A (2012) SWAN: Subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol 13(6):R44. doi:10.1186/gb-2012-13-6-r44 CrossRef
    55. McCarroll SA, Murphy CT, Zou S, Pletcher SD, Chin CS, Jan YN, Kenyon C, Bargmann CI, Li H (2004) Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet 36(2):197-04. doi:10.1038/ng1291 CrossRef
    56. Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, Carmouche RP, Ibberson D, Barath P, Demay F, Reid G, Benes V, Jeltsch A, Gannon F, Salbert G (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452(7183):45-0. doi:10.1038/nature06544 CrossRef
    57. Numata S, Ye T, Hyde TM, Guitart-Navarro X, Tao R, Wininger M, Colantuoni C, Weinberger DR, Kleinman JE, Lipska BK (2012) DNA methylation signatures in development and aging of the human prefrontal cortex. Am J Hum Genet 90(2):260-72. doi:10.1016/j.ajhg.2011.12.020 j.ajhg.2011.12.020" target="_blank" title="It opens in new window">CrossRef
    58. Park SK, Prolla TA (2005) Lessons learned from gene expression profile studies of aging and caloric restriction. Ageing Res Rev 4(1):55-5. doi:10.1016/j.arr.2004.09.003 j.arr.2004.09.003" target="_blank" title="It opens in new window">CrossRef
    59. Pero R, Peluso S, Angrisano T, Tuccillo C, Sacchetti S, Keller S, Tomaiuolo R, Bruni CB, Lembo F, Chiariotti L (2011) Chromatin and DNA methylation dynamics of Helicobacter pylori-induced COX-2 activation. Int J Med Microbiol IJMM 301(2):140-49. doi:10.1016/j.ijmm.2010.06.009 j.ijmm.2010.06.009" target="_blank" title="It opens in new window">CrossRef
    60. Pletcher SD, Macdonald SJ, Marguerie R, Certa U, Stearns SC, Goldstein DB, Partridge L (2002) Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol 12(9):712-23 CrossRef
    61. Pogribny IP, Tryndyak VP, Woods CG, Witt SE, Rusyn I (2007) Epigenetic effects of the continuous exposure to peroxisome proliferator WY-14,643 in mouse liver are dependent upon peroxisome proliferator activated receptor alpha. Mutat Res 625(1-):62-1. doi:10.1016/j.mrfmmm.2007.05.004 j.mrfmmm.2007.05.004" target="_blank" title="It opens in new window">CrossRef
    62. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057-068. doi:10.1038/nbt.1685 CrossRef
    63. Rakyan VK, Down TA, Thorne NP, Flicek P, Kulesha E, Graf S, Tomazou EM, Backdahl L, Johnson N, Herberth M, Howe KL, Jackson DK, Miretti MM, Fiegler H, Marioni JC, Birney E, Hubbard TJ, Carter NP, Tavare S, Beck S (2008) An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res 18(9):1518-529. doi:10.1101/gr.077479.108 CrossRef
    64. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, Whittaker P, McCann OT, Finer S, Valdes AM, Leslie RD, Deloukas P, Spector TD (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20(4):434-39. doi:10.1101/gr.103101.109 CrossRef
    65. Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang SM, Suemoto T, Higuchi M, Saido TC (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med 11(4):434-39. doi:10.1038/nm1206 CrossRef
    66. Sartor MA, Tomlinson CR, Wesselkamper SC, Sivaganesan S, Leikauf GD, Medvedovic M (2006) Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments. BMC Bioinforma 7:538. doi:10.1186/1471-2105-7-538 CrossRef
    67. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology. doi:10.2202/1544-6115.1027
    68. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20(4):440-46. doi:10.1101/gr.103606.109 CrossRef
    69. van Straten EM, Bloks VW, Huijkman NC, Baller JF, van Meer H, Lutjohann D, Kuipers F, Plosch T (2010) The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction. Am J Physiol Regul Integr Comp Physiol 298(2):R275–R282. doi:10.1152/ajpregu.00413.2009 jpregu.00413.2009" target="_blank" title="It opens in new window">CrossRef
    70. Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, Bauerschlag DO, Jockel KH, Erbel R, Muhleisen TW, Zenke M, Brummendorf TH, Wagner W (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15(2):R24. doi:10.1186/gb-2014-15-2-r24
    71. Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11(9):607-20. doi:10.1038/nrm2950 CrossRef
    72. Xu Z, Taylor JA (2014) Genome-wide age-related DNA methylation changes in blood and other tissues relate to histone modification, expression and cancer. Carcinogenesis 35(2):356-64. doi:10.1093/carcin/bgt391 CrossRef
    73. Zahn JM, Poosala S, Owen AB, Ingram DK, Lustig A, Carter A, Weeraratna AT, Taub DD, Gorospe M, Mazan-Mamczarz K, Lakatta EG, Boheler KR, Xu X, Mattson MP, Falco G, Ko MS, Schlessinger D, Firman J, Kummerfeld SK, Wood WH 3rd, Zonderman AB, Kim SK, Becker KG (2007) AGEMAP: a gene expression database for aging in mice. PLoS Genet 3(11):e201. doi:10.1371/journal.pgen.0030201 journal.pgen.0030201" target="_blank" title="It opens in new window">CrossRef
  • 作者单位:Wilma T. Steegenga (1)
    Mark V. Boekschoten (1)
    Carolien Lute (1)
    Guido J. Hooiveld (1)
    Philip J. de Groot (1)
    Tiffany J. Morris (2)
    Andrew E. Teschendorff (3)
    Lee M. Butcher (2)
    Stephan Beck (2)
    Michael Müller (1)

    1. Division of Human Nutrition, Wageningen University, Bomenweg 2, Wageningen, 6703 HD, The Netherlands
    2. Medical Genomics, Paul O’Gorman Building, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
    3. Statistical Cancer Genomics, Paul O’Gorman Building, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
  • ISSN:1574-4647
文摘
Aging is a progressive process that results in the accumulation of intra- and extracellular alterations that in turn contribute to a reduction in health. Age-related changes in DNA methylation have been reported before and may be responsible for aging-induced changes in gene expression, although a causal relationship has yet to be shown. Using genome-wide assays, we analyzed age-induced changes in DNA methylation and their effect on gene expression with and without transient induction with the synthetic transcription modulating agent WY14,643. To demonstrate feasibility of the approach, we isolated peripheral blood mononucleated cells (PBMCs) from five young and five old healthy male volunteers and cultured them with or without WY14,643. Infinium 450K BeadChip and Affymetrix Human Gene 1.1 ST expression array analysis revealed significant differential methylation of at least 5?% (ΔYO--?%) at 10,625 CpG sites between young and old subjects, but only a subset of the associated genes were also differentially expressed. Age-related differential methylation of previously reported epigenetic biomarkers of aging including ELOVL2, FHL2, PENK, and KLF14 was confirmed in our study, but these genes did not display an age-related change in gene expression in PBMCs. Bioinformatic analysis revealed that differentially methylated genes that lack an age-related expression change predominantly represent genes involved in carcinogenesis and developmental processes, and expression of most of these genes were silenced in PBMCs. No changes in DNA methylation were found in genes displaying transiently induced changes in gene expression. In conclusion, aging-induced differential methylation often targets developmental genes and occurs mostly without change in gene expression.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700