Ammonia oxidizing bacteria and archaea in horizontal flow biofilm reactors treating ammonia-contaminated air at 10 °C
详细信息    查看全文
  • 作者:Seán Gerrity ; Eoghan Clifford ; Colm Kennelly…
  • 关键词:Ammonia oxidation ; Ammonia oxidising bacteria ; Ammonia oxidising archaea ; Nitrification ; low ; temperature ; HFBR (horizontal flow biofilm reactor)
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:43
  • 期:5
  • 页码:651-661
  • 全文大小:1,396 KB
  • 参考文献:1.Aakra Å, Utåker JB, Nes IF (1999) RFLP of rRNA genes and sequencing of the 16S–23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: a phylogenetic approach. Int J Syst Bacteriol 49:123–130. doi:10.​1099/​00207713-49-1-123 CrossRef PubMed
    2.Alawi M, Lipski A, Sanders T, Eva Maria P, Spieck E (2007) Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic. ISME J 1:256–264CrossRef PubMed
    3.Alawi M, Off S, Kaya M, Spieck E (2009) Temperature influences the population structure of nitrite-oxidizing bacteria in activated sludge. Environ Microbiol Rep 1:184–190. doi:10.​1111/​j.​1758-2229.​2009.​00029.​x CrossRef PubMed
    4.Avrahami S, Bohannan BJM (2007) Response of Nitrosospira sp. Strain AF-Like ammonia oxidizers to changes in temperature, soil moisture content, and fertilizer concentration. Appl Environ Microbiol 73:1166–1173. doi:10.​1128/​aem.​01803-06 CrossRef PubMed PubMedCentral
    5.Awwa A (1998) Standard methods for the examination of water and wastewater. Standard Methods for the Examination of Water and Wastewater, Washington, DC 20
    6.Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83CrossRef PubMed
    7.Chen S, Ling J, Blancheton JP (2006) Nitrification kinetics of biofilm as affected by water quality factors. Aquacult Eng 34:179–197. doi:10.​1016/​j.​aquaeng.​2005.​09.​004 CrossRef
    8.Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRef
    9.Clarke KR, Clarke RK, Gorley RN (2006) Primer V6: user manual—tutorial. Plymouth Marine Laboratory, Plymouth
    10.Clifford E, Kennelly C, Walsh R, Gerrity S, Reilly E, Collins G (2012) Optimization of a horizontal-flow biofilm reactor for the removal of methane at low temperatures. J Air Waste Manage Assoc 62:1166–1173CrossRef
    11.Clifford E, Rodgers M, de Paor D (2008) Dairy washwater treatment using a horizontal flow biofilm system. Water Sci Technol 58:1879–1888CrossRef PubMed
    12.Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688. doi:10.​1073/​pnas.​0506625102 CrossRef PubMed PubMedCentral
    13.Geets J, de Cooman M, Wittebolle L, Heylen K, Vanparys B, De Vos P, Verstraete W, Boon N (2007) Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Appl Microbiol Biotechnol 75:211–221. doi:10.​1007/​s00253-006-0805-8 CrossRef PubMed
    14.Hatzenpichler R (2012) Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol 78:7501–7510. doi:10.​1128/​aem.​01960-12 CrossRef PubMed PubMedCentral
    15.Jiang X, Yan R, Tay J (2009) Transient-state biodegradation behavior of a horizontal biotrickling filter in co-treating gaseous H2S and NH3. Appl Microbiol Biotechnol 81:969–975. doi:10.​1007/​s00253-008-1759-9 CrossRef PubMed
    16.Jin T, Zhang T, Yan Q (2010) Characterization and quantification of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR. Appl Microbiol Biotechnol 87:1167–1176. doi:10.​1007/​s00253-010-2595-2 CrossRef PubMed PubMedCentral
    17.Karkman A, Mattila K, Tamminen M, Virta M (2011) Cold temperature decreases bacterial species richness in nitrogen-removing bioreactors treating inorganic mine waters. Biotechnol Bioeng 108:2876–2883. doi:10.​1002/​bit.​23267 CrossRef PubMed
    18.Kembel SW, Wu M, Eisen JA, Green JL (2012) Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLoS Comput Biol 8:e1002743. doi:10.​1371/​journal.​pcbi.​1002743 CrossRef PubMed PubMedCentral
    19.Kennelly C, Gerrity S, Collins G, Clifford E (2014) Liquid phase optimisation in a horizontal flow biofilm reactor (HFBR) technology for the removal of methane at low temperatures. Chem Eng J 242:144–154. doi:10.​1016/​j.​cej.​2013.​12.​071 CrossRef
    20.Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRef PubMed
    21.Norton JM, Alzerreca JJ, Suwa Y, Klotz MG (2002) Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch Microbiol 177:139–149. doi:10.​1007/​s00203-001-0369-z CrossRef PubMed
    22.Norton JM, Stark JM (2011) Regulation and measurement of nitrification in terrestrial systems. Methods Enzymol 486:343–368CrossRef PubMed
    23.Phillips JP (2008) Development of innovative solutions for biological treatment of odour and voc emissions from municipal wastewater treatment applications. Proc Water Env Fed 2008:5317–5326. doi:10.​2175/​1938647087888052​15 CrossRef
    24.Posmanik R, Gross A, Nejidat A (2014) Effect of high ammonia loads emitted from poultry-manure digestion on nitrification activity and nitrifier-community structure in a compost biofilter. Ecol Eng 62:140–147. doi:10.​1016/​j.​ecoleng.​2013.​10.​033 CrossRef
    25.Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531. doi:10.​1016/​j.​tim.​2012.​08.​001 CrossRef PubMed
    26.Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, Ingalls AE, Moffett JW, Armbrust EV, Stahl DA (2014) Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci USA 111:12504–12509. doi:10.​1073/​pnas.​1324115111 CrossRef PubMed PubMedCentral
    27.Robinson A, Di H, Cameron K, Podolyan A, He J (2014) The effect of soil pH and dicyandiamide (DCD) on N2O emissions and ammonia oxidiser abundance in a stimulated grazed pasture soil. J Soils Sed 14:1434–1444. doi:10.​1007/​s11368-014-0888-2 CrossRef
    28.Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712PubMed PubMedCentral
    29.Ruiz G, Jeison D, Chamy R (2003) Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res 37:1371–1377. doi:10.​1016/​S0043-1354(02)00475-X CrossRef PubMed
    30.Sakuma T, Jinsiriwanit S, Hattori T, Deshusses MA (2008) Removal of ammonia from contaminated air in a biotrickling filter–denitrifying bioreactor combination system. Water Res 42:4507–4513CrossRef PubMed
    31.Schleper C, Nicol GW (2010) Ammonia-oxidising archaea—physiology, ecology and evolution. In: Robert KP (ed) Advances in microbial physiology, vol vol 57. Academic Press, Cambridge, pp 1–41. doi:10.​1016/​B978-0-12-381045-8.​00001-1
    32.Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRef PubMed PubMedCentral
    33.Siripong S, Rittmann BE (2007) Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Res 41:1110–1120. doi:10.​1016/​j.​watres.​2006.​11.​050 CrossRef PubMed
    34.Taghipour H, Shahmansoury MR, Bina B, Movahdian H (2008) Operational parameters in biofiltration of ammonia-contaminated air streams using compost-pieces of hard plastics filter media. Chem Eng J 137:198–204. doi:10.​1016/​j.​cej.​2007.​04.​015 CrossRef
    35.Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRef PubMed PubMedCentral
    36.Taylor AE, Zeglin LH, Wanzek TA, Myrold DD, Bottomley PJ (2012) Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. ISME J 6:2024–2032. doi:10.​1038/​ismej.​2012.​51 CrossRef PubMed PubMedCentral
    37.Trias R, García-Lledó A, Sánchez N, López-Jurado JL, Hallin S, Bañeras L (2012) Abundance and composition of epiphytic bacterial and archaeal ammonia oxidizers of marine red and brown macroalgae. Appl Environ Microbiol 78:318–325CrossRef PubMed PubMedCentral
    38.Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H (2002) Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek 81:665–680. doi:10.​1023/​a:​1020586312170 CrossRef PubMed
    39.Wells GF, Park HD, Yeung CH, Eggleston B, Francis CA, Criddle CS (2009) Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environ Microbiol 11:2310–2328. doi:10.​1111/​j.​1462-2920.​2009.​01958.​x CrossRef PubMed
    40.Yasuda T, Waki M, Kuroda K, Hanajima D, Fukumoto Y, Yamagishi T, Suwa Y, Suzuki K (2013) Responses of community structure of amoA-encoding archaea and ammonia-oxidizing bacteria in ammonia biofilter with rockwool mixtures to the gradual increases in ammonium and nitrate. J Appl Microbiol 114:746–761. doi:10.​1111/​jam.​12091 CrossRef PubMed
    41.Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679. doi:10.​1002/​bit.​20347 CrossRef PubMed
    42.Zápotocký L, Šváb M (2012) Removal of ammonia emissions from waste air in a biotrickling filter: pilot-scale demonstration in real conditions. Cent Eur J Chem 10:1049–1058. doi:10.​2478/​s11532-012-0010-9
    43.Zhang T, Ye L, Tong A, Shao MF, Lok S (2011) Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors. Appl Microbiol Biotechnol 91:1215–1225. doi:10.​1007/​s00253-011-3408-y CrossRef PubMed PubMedCentral
  • 作者单位:Seán Gerrity (1) (3)
    Eoghan Clifford (2) (3)
    Colm Kennelly (2)
    Gavin Collins (1) (3) (4)

    1. School of Natural Sciences, National University of Ireland Galway, University Road, H91TK33, Galway, Ireland
    3. Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland Galway, University Road, Galway, Ireland
    2. Civil Engineering, College of Engineering & Informatics, National University of Ireland Galway, University Road, H91HX31, Galway, Ireland
    4. School of Engineering, The University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, G12 8LT, UK
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Chemistry
    Biotechnology
    Genetic Engineering
    Biochemistry
    Bioinformatics
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1476-5535
文摘
The objective of this study was to demonstrate the feasibility of novel, Horizontal Flow Biofilm Reactor (HFBR) technology for the treatment of ammonia (NH3)-contaminated airstreams. Three laboratory-scale HFBRs were used for remediation of an NH3-containing airstream at 10 °C during a 90-d trial to test the efficacy of low-temperature treatment. Average ammonia removal efficiencies of 99.7 % were achieved at maximum loading rates of 4.8 g NH3 m3 h−1. Biological nitrification of ammonia to nitrite (NO2 −) and nitrate (NO3 −) was mediated by nitrifying bacterial and archaeal biofilm populations. Ammonia-oxidising bacteria (AOB) were significantly more abundant than ammonia-oxidising archaea (AOA) vertically at each of seven sampling zones along the vertical HFBRs. Nitrosomonas and Nitrosospira, were the two most dominant bacterial genera detected in the HFBRs, while an uncultured archaeal clone dominated the AOA community. The bacterial community composition across the three HFBRs was highly conserved, although variations occurred between HFBR zones and were driven by physicochemical variables. The study demonstrates the feasibility of HFBRs for the treatment of ammonia-contaminated airstreams at low temperatures; identifies key nitrifying microorganisms driving the removal process; and provides insights for process optimisation and control. The findings are significant for industrial applications of gas oxidation technology in temperate climates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700