Neurally adjusted ventilatory assist and proportional assist ventilation both improve patient-ventilator interaction
详细信息    查看全文
  • 作者:Matthieu Schmidt (1) (2) (3) (6)
    Felix Kindler (3)
    J茅r么me Cecchini (1) (2)
    Tymoth茅e Poitou (4)
    Elise Morawiec (1) (2) (3)
    Romain Persichini (3)
    Thomas Similowski (1) (2) (3)
    Alexandre Demoule (1) (2) (3) (5)

    1. Sorbonne Universit茅s
    ; UPMC Univ Paris 06 ; UMR_S 1158 Neurophysiologie Respiratoire Exp茅rimentale et Clinique ; F-75005 ; Paris ; France
    2. INSERM
    ; UMR_S 1158 Neurophysiologie Respiratoire Exp茅rimentale et Clinique ; F-75005 ; Paris ; France
    3. AP-HP
    ; Groupe Hospitalier Piti茅-Salp锚tri猫re Charles Foix ; Service de Pneumologie et R茅animation M茅dicale (D茅partement R3S) ; F-75013 ; Paris ; France
    6. Service de Pneumologie et R茅animation M茅dicale
    ; Groupe Hospitalier Piti茅-Salp锚tri猫re ; 47-83 boulevard de l鈥橦么pital ; 75651 ; Paris ; Cedex 13 ; France
    4. Universit茅 Pierre et Marie Curie-CNRS-INSERM
    ; ICM ; Equipe Neurologie et Th茅rapeutique Exp茅rimentale ; H么pital de la Salp锚tri猫re ; Paris ; France
    5. U974
    ; Institut National de la Sant茅 et de la Recherche m茅dicale ; Paris ; France
  • 刊名:Critical Care
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:19
  • 期:1
  • 全文大小:639 KB
  • 参考文献:1. Futier, E, Constantin, JM, Combaret, L, Mosoni, L, Roszyk, L, Sapin, V (2008) Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Crit Care. 12: pp. R116 CrossRef
    2. Hudson, MB, Smuder, AJ, Nelson, WB, Bruells, CS, Levine, S, Powers, SK (2012) Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med. 40: pp. 1254-60 CrossRef
    3. Levine, S, Nguyen, T, Taylor, N, Friscia, ME, Budak, MT, Rothenberg, P (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 358: pp. 1327-35 CrossRef
    4. Esteban, A, Frutos-Vivar, F, Muriel, A, Ferguson, ND, Penuelas, O, Abraira, V (2013) Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med. 188: pp. 220-30 CrossRef
    5. Schmidt, M, Banzett, RB, Raux, M, Morelot-Panzini, C, Dangers, L, Similowski, T (2014) Unrecognized suffering in the ICU: addressing dyspnea in mechanically ventilated patients. Intensive Care Med. 40: pp. 1-10 CrossRef
    6. Dreyfuss, D, Soler, P, Basset, G, Saumon, G (1988) High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 137: pp. 1159-64 CrossRef
    7. Thille, AW, Rodriguez, P, Cabello, B, Lellouche, F, Brochard, L (2006) Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 32: pp. 1515-22 CrossRef
    8. Sinderby, C, Navalesi, P, Beck, J, Skrobik, Y, Comtois, N, Friberg, S (1999) Neural control of mechanical ventilation in respiratory failure. Nat Med. 5: pp. 1433-6 CrossRef
    9. Younes, M (1992) Proportional assist ventilation, a new approach to ventilatory support. Theory Am Rev Respir Dis. 145: pp. 114-20 CrossRef
    10. Brander, L, Leong-Poi, H, Beck, J, Brunet, F, Hutchison, SJ, Slutsky, AS (2009) Titration and implementation of neurally adjusted ventilatory assist in critically ill patients. Chest. 135: pp. 695-703 CrossRef
    11. Colombo, D, Cammarota, G, Bergamaschi, V, Lucia, M, Corte, FD, Navalesi, P (2008) Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med. 34: pp. 2010-8 CrossRef
    12. Giannouli, E, Webster, K, Roberts, D, Younes, M (1999) Response of ventilator-dependent patients to different levels of pressure support and proportional assist. Am J Respir Crit Care Med. 159: pp. 1716-25 CrossRef
    13. Brander, L, Sinderby, C, Lecomte, F, Leong-Poi, H, Bell, D, Beck, J (2009) Neurally adjusted ventilatory assist decreases ventilator-induced lung injury and non-pulmonary organ dysfunction in rabbits with acute lung injury. Intensive Care Med. 35: pp. 1979-89 CrossRef
    14. Coisel, Y, Chanques, G, Jung, B, Constantin, JM, Capdevila, X, Matecki, S (2010) Neurally adjusted ventilatory assist in critically ill postoperative patients: a crossover randomized study. Anesthesiology. 113: pp. 925-35 CrossRef
    15. Fernandez-Vivas, M, Caturla-Such, J, Gonzalez dela Rosa, J, Acosta-Escribano, J, Alvarez-Sanchez, B, Canovas-Robles, J (2003) Noninvasive pressure support versus proportional assist ventilation in acute respiratory failure. Intensive Care Med. 29: pp. 1126-33 CrossRef
    16. Gay, PC, Hess, DR, Hill, NS (2001) Noninvasive proportional assist ventilation for acute respiratory insufficiency: comparison with pressure support ventilation. Am J Respir Crit Care Med. 164: pp. 1606-11 CrossRef
    17. Hernandez, P, Maltais, F, Gursahaney, A, Leblanc, P, Gottfried, SB (2001) Proportional assist ventilation may improve exercise performance in severe chronic obstructive pulmonary disease. J Cardiopulm Rehabil. 21: pp. 135-42 CrossRef
    18. Patroniti, N, Bellani, G, Saccavino, E, Zanella, A, Grasselli, G, Isgro, S (2012) Respiratory pattern during neurally adjusted ventilatory assist in acute respiratory failure patients. Intensive Care Med. 38: pp. 230-9 CrossRef
    19. Schmidt, M, Demoule, A, Cracco, C, Gharbi, A, Fiamma, MN, Straus, C (2010) Neurally adjusted ventilatory assist increases respiratory variability and complexity in acute respiratory failure. Anesthesiology. 112: pp. 670-81 CrossRef
    20. Wrigge, H, Golisch, W, Zinserling, J, Sydow, M, Almeling, G, Burchardi, H (1999) Proportional assist versus pressure support ventilation: effects on breathing pattern and respiratory work of patients with chronic obstructive pulmonary disease. Intensive Care Med. 25: pp. 790-8 CrossRef
    21. Appendini, L, Purro, A, Gudjonsdottir, M, Baderna, P, Patessio, A, Zanaboni, S (1999) Physiologic response of ventilator-dependent patients with chronic obstructive pulmonary disease to proportional assist ventilation and continuous positive airway pressure. Am J Respir Crit Care Med. 159: pp. 1510-7 CrossRef
    22. Passam, F, Hoing, S, Prinianakis, G, Siafakas, N, Milic-Emili, J, Georgopoulos, D (2003) Effect of different levels of pressure support and proportional assist ventilation on breathing pattern, work of breathing and gas exchange in mechanically ventilated hypercapnic COPD patients with acute respiratory failure. Respiration. 70: pp. 355-61 CrossRef
    23. Schmidt, M, Dres, M, Raux, M, Deslandes-Boutmy, E, Kindler, F, Mayaux, J (2012) Neurally adjusted ventilatory assist improves patient-ventilator interaction during postextubation prophylactic noninvasive ventilation. Crit Care Med. 40: pp. 1738-44 CrossRef
    24. Xirouchaki, N, Kondili, E, Vaporidi, K, Xirouchakis, G, Klimathianaki, M, Gavriilidis, G (2008) Proportional assist ventilation with load-adjustable gain factors in critically ill patients: comparison with pressure support. Intensive Care Med. 34: pp. 2026-34 CrossRef
    25. Piquilloud, L, Vignaux, L, Bialais, E, Roeseler, J, Sottiaux, T, Laterre, PF (2011) Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med. 37: pp. 263-71 CrossRef
    26. Spahija, J, Marchie, M, Albert, M, Bellemare, P, Delisle, S, Beck, J (2010) Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 38: pp. 518-26 CrossRef
    27. Sinderby, C, Beck, J (2008) Proportional assist ventilation and neurally adjusted ventilatory assist鈥揵etter approaches to patient ventilator synchrony?. Clin Chest Med 29: pp. 329-42 CrossRef
    28. Barwing, J, Ambold, M, Linden, N, Quintel, M, Moerer, O (2009) Evaluation of the catheter positioning for neurally adjusted ventilatory assist. Intensive Care Med. 35: pp. 1809-14 CrossRef
    29. Leung, P, Jubran, A, Tobin, MJ (1997) Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med. 155: pp. 1940-8 CrossRef
    30. Nava, S, Bruschi, C, Rubini, F, Palo, A, Iotti, G, Braschi, A (1995) Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med. 21: pp. 871-9 CrossRef
    31. Terzi, N, Pelieu, I, Guittet, L, Ramakers, M, Seguin, A, Daubin, C (2010) Neurally adjusted ventilatory assist in patients recovering spontaneous breathing after acute respiratory distress syndrome: physiological evaluation. Crit Care Med. 38: pp. 1830-7 CrossRef
    32. Priban, IP (1963) An analysis of some short-term patterns of breathing in man at rest. J Physiol. 166: pp. 425-34 CrossRef
    33. Fiamma, MN, Straus, C, Thibault, S, Wysocki, M, Baconnier, P, Similowski, T (2007) Effects of hypercapnia and hypocapnia on ventilatory variability and the chaotic dynamics of ventilatory flow in humans. Am J Physiol Regul Integr Comp Physiol. 292: pp. R1985-93 CrossRef
    34. Anzueto, A, Jubran, A, Ohar, JA, Piquette, CA, Rennard, SI, Colice, G (1997) Effects of aerosolized surfactant in patients with stable chronic bronchitis: a prospective randomized controlled trial. JAMA. 278: pp. 1426-31 CrossRef
    35. Jubran, A, Parthasarathy, S (2000) Hypercapnic respiratory failure during weaning: neuromuscular capacity versus muscle loads. Respir Care Clin N Am 6: pp. 385-405 CrossRef
    36. Beck, J, Gottfried, SB, Navalesi, P, Skrobik, Y, Comtois, N, Rossini, M (2001) Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure. Am J Respir Crit Care Med. 164: pp. 419-24 CrossRef
    37. Goulet, R, Hess, D, Kacmarek, RM (1997) Pressure vs flow triggering during pressure support ventilation. Chest. 111: pp. 1649-53 CrossRef
    38. Akoumianaki, E, Prinianakis, G, Kondili, E, Malliotakis, P, Georgopoulos, D (2014) Physiologic comparison of neurally adjusted ventilator assist, proportional assist and pressure support ventilation in critically ill patients. Respir Physiol Neurobiol. 203: pp. 82-9 CrossRef
    39. Kondili, E, Prinianakis, G, Alexopoulou, C, Vakouti, E, Klimathianaki, M, Georgopoulos, D (2006) Respiratory load compensation during mechanical ventilation鈥損roportional assist ventilation with load-adjustable gain factors versus pressure support. Intensive Care Med. 32: pp. 692-9 CrossRef
    40. Thille, AW, Cabello, B, Galia, F, Lyazidi, A, Brochard, L (2008) Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 34: pp. 1477-86 CrossRef
    41. Peluso, G, Marchese, M, Furgi, A, Ranieri, M, Russo Spena, S, Ravagnan, G (1997) SV-IV, a major protein secreted from rat seminal vesicle epithelium, promotes lymphocyte cytotoxic activity against the lymphoblastoid Raji cell line in human peripheral blood mononuclear cells. Int J Cancer. 72: pp. 321-8 CrossRef
    42. Krasniqi, A, Limani, D, Gashi-Luci, L, Spahija, G, Dreshaj, IA (2010) Primary hydatid cyst of the gallbladder: a case report. J Med Case Reports. 4: pp. 29 CrossRef
    43. Marantz, S, Patrick, W, Webster, K, Roberts, D, Oppenheimer, L, Younes, M (1996) Response of ventilator-dependent patients to different levels of proportional assist. J Appl Physiol (1985) 80: pp. 397-403
    44. Lellouche, F, Dionne, S, Simard, S, Bussieres, J, Dagenais, F (2012) High tidal volumes in mechanically ventilated patients increase organ dysfunction after cardiac surgery. Anesthesiology. 116: pp. 1072-82 CrossRef
    45. Serpa Neto, A, Cardoso, SO, Manetta, JA, Pereira, VG, Esposito, DC, Pasqualucci Mde, O (2012) Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 308: pp. 1651-9 CrossRef
    46. Gutierrez, G, Das, A, Ballarino, G, Beyzaei-Arani, A, Turkan, H, Wulf-Gutierrez, M (2013) Decreased respiratory rate variability during mechanical ventilation is associated with increased mortality. Intensive Care Med. 39: pp. 1359-67 CrossRef
    47. Arold, SP, Mora, R, Lutchen, KR, Ingenito, EP, Suki, B (2002) Variable tidal volume ventilation improves lung mechanics and gas exchange in a rodent model of acute lung injury. Am J Respir Crit Care Med. 165: pp. 366-71 CrossRef
    48. Abreu, M, Spieth, PM, Pelosi, P, Carvalho, AR, Walter, C, Schreiber-Ferstl, A (2008) Noisy pressure support ventilation: a pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med. 36: pp. 818-27 CrossRef
    49. Beda, A, Spieth, PM, Handzsuj, T, Pelosi, P, Carvalho, NC, Koch, E (2010) A novel adaptive control system for noisy pressure-controlled ventilation: a numerical simulation and bench test study. Intensive Care Med. 36: pp. 164-8 CrossRef
    50. Spieth, PM, Guldner, A, Beda, A, Carvalho, N, Nowack, T, Krause, A (2012) Comparative effects of proportional assist and variable pressure support ventilation on lung function and damage in experimental lung injury. Crit Care Med. 40: pp. 2654-61 CrossRef
    51. Suki, B, Alencar, AM, Sujeer, MK, Lutchen, KR, Collins, JJ, Andrade, JS (1998) Life-support system benefits from noise. Nature. 393: pp. 127-8 CrossRef
  • 刊物主题:Intensive / Critical Care Medicine; Emergency Medicine;
  • 出版者:BioMed Central
  • ISSN:1364-8535
文摘
Introduction The objective was to compare the impact of three assistance levels of different modes of mechanical ventilation; neurally adjusted ventilatory assist (NAVA), proportional assist ventilation (PAV), and pressure support ventilation (PSV) on major features of patient-ventilator interaction. Methods PSV, NAVA, and PAV were set to obtain a tidal volume (VT) of 6 to 8聽ml/kg (PSV100, NAVA100, and PAV100) in 16 intubated patients. Assistance was further decreased by 50% (PSV50, NAVA50, and PAV50) and then increased by 50% (PSV150, NAVA150, and PAV150) with all modes. The three modes were randomly applied. Airway flow and pressure, electrical activity of the diaphragm (EAdi), and blood gases were measured. VT, peak EAdi, coefficient of variation of VT and EAdi, and the prevalence of the main patient-ventilator asynchronies were calculated. Results PAV and NAVA prevented the increase of VT with high levels of assistance (median 7.4 (interquartile range (IQR) 5.7 to 10.1) ml/kg and 7.4 (IQR, 5.9 to 10.5) ml/kg with PAV150 and NAVA150 versus 10.9 (IQR, 8.9 to 12.0) ml/kg with PSV150, P EAdi was higher with PAV than with PSV at level100 and level150. The coefficient of variation of VT was higher with NAVA and PAV (19 (IQR, 14 to 31)% and 21 (IQR 16 to 29)% with NAVA100 and PAV100 versus 13 (IQR 11 to 18)% with PSV100, P NAVA than with PSV (P NAVA than with PAV and PSV (P Conclusions PAV and NAVA both prevent overdistention, improve neuromechanical coupling, restore the variability of the breathing pattern, and decrease patient-ventilator asynchrony in fairly similar ways compared with PSV. Further studies are needed to evaluate the possible clinical benefits of NAVA and PAV on clinical outcomes. Trial registration Clinicaltrials.gov NCT02056093. Registered 18 December 2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700