Convective heat transfer and friction factor of aqueous Fe3O4 nanofluid flow under laminar regime
详细信息    查看全文
  • 作者:Mojtaba Hosseinzadeh ; Saeed Zeinali Heris…
  • 关键词:Fe3O4/water nanofluid ; Magnetic field ; Friction factor ; Heat transfer enhancement ; Performance index
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:124
  • 期:2
  • 页码:827-838
  • 全文大小:1,161 KB
  • 参考文献:1.Choi S. Developments and applications of non-Newtonian flows. ASME FED. 1995;66:99–105.
    2.Shanbedi M, Heris SZ, Maskooki A. Experimental investigation of stability and thermophysical properties of carbon nanotubes suspension in the presence of different surfactants. J Therm Anal Calorim. 2015;120(2):1193–201.CrossRef
    3.Esfe MH, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119(3):1817–24.CrossRef
    4.Esfe MH, Saedodin S, Asadi A, Karimipour A. Thermal conductivity and viscosity of Mg(OH)2-ethylene glycol nanofluids. J Therm Anal Calorim. 2015;120(2):1145–9.CrossRef
    5.Marin CN, Malaescu I, Fannin PC. Theoretical evaluation of the heating rate of ferrofluids. J Therm Anal Calorim. 2015;119(2):1199–203.CrossRef
    6.Kumar BR, Basheer NS, Jacob S, Kurian A, George SD. Thermal-lens probing of the enhanced thermal diffusivity of gold nanofluid-ethylene glycol mixture. J Therm Anal Calorim. 2015;119(1):453–60.CrossRef
    7.Bahiraei M, Mashaei PR. Using nanofluid as a smart suspension in cooling channels with discrete heat sources. J Therm Anal Calorim. 2015;119(3):2079–91.CrossRef
    8.Barbés B, Páramo R, Blanco E, Casanova C. Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J Therm Anal Calorim. 2014;115(2):1883–91.CrossRef
    9.Shanbedi M, Heris SZ, Amiri A, Adyani S, Alizadeh M, Baniadam M. Optimization of the thermal efficiency of a two-phase closed thermosyphon using active learning on the human algorithm interaction. Numer Heat Transf A Appl. 2014;66(8):947–62.CrossRef
    10.Tabari ZT, Heris SZ. Heat transfer performance of milk pasteurization plate heat exchangers using MWCNT/water nanofluid. J Dispers Sci Technol. 2014;36(2):196–204.CrossRef
    11.Heris SZ, Etemad SG, Esfahany MN. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf. 2006;33(4):529–35.CrossRef
    12.Esfe MH, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids. J Therm Anal Calorim. 2014;117(2):675–81.CrossRef
    13.Barbés B, Páramo R, Blanco E, Pastoriza-Gallego M, Piñeiro M, Legido J, Casanova C. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim. 2013;111(2):1615–25.CrossRef
    14.Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the application of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57(2):582–94.CrossRef
    15.Mahian O, Pop I, Sahin AZ, Oztop HF, Wongwises S. Irreversibility analysis of a vertical annulus using TiO2/water nanofluid with MHD flow effects. Int J Heat Mass Transf. 2013;64:671–9.CrossRef
    16.Bahiraei M, Hangi M. Flow and heat transfer characteristics of magnetic nanofluids: a review. J Magn Magn Mater. 2015;374:125–38.CrossRef
    17.Abareshi M, Goharshadi EK, Zebarjad SM, Fadafan HK, Youssefi A. Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater. 2010;322(24):3895–901.CrossRef
    18.Lugo L, Legido JL, Piñeiro MM, Pastoriza-Gallego MJ. Enhancement of thermal conductivity and volumetric behavior of FexOy nanofluids. J Appl Phys. 2011;110(1):014309.CrossRef
    19.Sharma P, Baek I, Cho T, Park S, Lee KB. Enhancement of thermal conductivity of ethylene glycol based silver nanofluids. Powder Technol. 2011;208(1):7–19.CrossRef
    20.Yu W, Xie H, Chen W. Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets. J Appl Phys. 2010;107(9):094317.CrossRef
    21.Altan CL, Bucak S. The effect of Fe3O4 nanoparticles on the thermal conductivities of various base fluids. Nanotechnology. 2011;22(28):285713.CrossRef
    22.Sun PC, Huang Y, Zheng RT, Cheng GA, Wan QM, Ding YL. Magnetic graphite suspensions with reversible thermal conductivity. Mater Lett. 2015;149:92–4.CrossRef
    23.Patel EH, Sundararajan T, Das SK. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res. 2010;12(3):1015–31.CrossRef
    24.Philip J, Shima PD, Raj B. Enhancement of thermal conductivity in magnetite based nanofluid due to chain like structures. Appl Phys. 2007;91(20):203108.
    25.Gavili A, Zabihi F, Isfahani TD, Sabbaghzadeh J. The thermal conductivity of water base ferrofluids under magnetic field. Exp Thermal Fluid Sci. 2012;41:94–8.CrossRef
    26.Ghasemian M, Ashrafi ZN, Goharkhah M, Ashjaee M. Heat transfer characteristics of Fe3O4 ferrofluid flowing in a mini channel under constant and alternating magnetic field. J Magn Magn Mater. 2015;381:158–67.CrossRef
    27.Sheikholeslami M, Ganji DD. Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy. 2014;75:400–10.CrossRef
    28.Rizvi IH, Jain A, Ghosh SK, Mukherjee PS. Mathematical modelling of thermal conductivity for nanofluid considering interfacial nano-layer. Heat Mass Transf. 2013;49(4):595–600.CrossRef
    29.Samulyak R, Du J, Glimm J, Xu Z. A numerical algorithm for MHD of free surface flows at low magnetic Reynold numbers. J Comput Phys. 2007;226(2):1532–49.CrossRef
    30.Aminfar H, Mohammadpourfard M, Zonouzi SA. Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field. J Magn Magn Mater. 2013;327:31–42.CrossRef
    31.Zablotsky D, Blums E. Numerical investigation of optically induced microconvection in thin ferrofluid layers. J Magn Magn Mater. 2011;323(10):1338–42.CrossRef
    32.Sheikholeslami M, Gorji-Bandpy M. Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field. Powder Technol. 2014;256:490–8.CrossRef
    33.Salehi H, Heris SZ, Noie SH. Water-silver nanofluid application in a TPCT under an external magnetic field. Heat Transf Asian Res. 2012;41(4):289–301.CrossRef
    34.Goharkhah M, Salarian A, Ashjaee M, Shahabadi M. Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field. Powder Technol. 2015;274:258–67.CrossRef
    35.Lajvardi M, Moghimi-Rad J, Hadi I, Gavili A, Isfahani TD, Zabihi F, Sabbaghzadeh J. Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect. J Magn Magn Mater. 2010;322(21):3508–13.CrossRef
    36.Azizian R, Doroodchi E, McKrell T, Buongiorno J, Hu LW, Moghtaderi B. Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids. Int J Heat Mass Transf. 2014;68:94–109.CrossRef
    37.Sundar LS, Naik MT, Sharma KV, Singh MK, Reddy TCS. Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Exp Thermal Fluid Sci. 2012;37:65–71.CrossRef
    38.Wang B, Wang B, Wei P, Wang X, Lou W. Controlled synthesis and size-dependent thermal conductivity of Fe3O4 magnetic nanofluids. Dalton Trans. 2012;41(3):396–9.
    39.Bahiraei M, Hangi M. Studying flow and heat transfer characteristics of magnetic nanofluid under the effect of magnetic field using Euler–Lagrange approach. Int J Appl Electromagn Mech. 2014;46(3):555–67.
    40.Kabeel AE, El-Said EMS, Dafea SA. A review of magnetic field effects on flow and heat transfer in liquids: present status and future potential for studies and applications. Renew Sustain Energy Rev. 2015;45:830–7.CrossRef
    41.Shah RK. Thermal entry length solutions for the circular tube and parallel plates. In: Proceedings of the 3rd national heat mass transfer conference indian institute of technology, Bombay; 1975.
    42.Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.CrossRef
    43.Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res. 2003;5(1):167–71.CrossRef
    44.Duangthongsuk W, Wongwises S. Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid. Int Commun Heat Mass Transf. 2008;35(10):1320–6.CrossRef
    45.Salehi H, Heris SZ, Noie SH. Experimental study of a two-phase close thermosyphon with nanofluid and magnetic field effect. J Enhanc Heat Transf. 2011;18(3):261–9.CrossRef
    46.Nassan TH, Heris SZ, Noie SH. A comparison of experimental heat transfer characteristics for Al2O3/water and CuO/water nanofluids in square cross-section duct. Int Commun Heat Mass. 2010;37(7):924–8.CrossRef
    47.Edalati Z, Heris SZ, Noie SH. The study of laminar convective heat transfer of CuO/water nanofluid through an equilateral triangular duct at constant wall heat flux. Heat Transf Asian Res. 2012;41(5):418–29.CrossRef
    48.Solang KH, Kazi SN, Luhur MR, Badarudin A, Amir A, Sadri R, Zubir MNM, Gharehkhani S, Teng KH. A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids. Energy. 2015;89:1065–86.CrossRef
    49.Bahiraei M, Hangi M. Investigating the efficacy of magnetic nanofluid as a coolant in double-pipe heat exchanger in the presence of magnetic field. Energy Convers Manag. 2013;76:1125–33.CrossRef
    50.Beheshti A, Shanbedi M, Heris SZ. Heat transfer and rheological properties of transformer oil-oxidized MWCNT nanofluid. J Therm Anal Calorim. 2014;118(3):1451–60.CrossRef
    51.Li Q, Xuan Y, Wang J. Experimental investigations on transport properties of magnetic fluids. Exp Therm Fluid Sci. 2005;30(2):109–16.CrossRef
    52.Wongcharee KH, Eiamsa-ard S. Enhancement of heat transfer using CuO/waternanofluid and twisted tape with alternate axis. Int Commun Heat Mass Transf. 2011;38(6):742–8.CrossRef
    53.Kahani M, Heris SZ, Mousavi SM. Comparative study between metal oxide nanopowders on thermal characteristics of nanofluid flow through helical coils. Powder Technol. 2013;246:82–92.CrossRef
  • 作者单位:Mojtaba Hosseinzadeh (1)
    Saeed Zeinali Heris (2)
    Amir Beheshti (1)
    Mehdi Shanbedi (1)

    1. Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
    2. Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
In present study, the effect of magnetic field on heat transfer enhancement and friction factor of Fe3O4/water nanofluid is experimentally investigated. For this purpose, well-dispersed nanofluids with concentrations of 0.1 and 0.2 % (by mass) in presence of stabilizer are synthesized. Then the experiments are conducted at different Reynolds numbers and magnetic field strengths in an apparatus containing a horizontal circular tube with a length of 1000 mm and diameter of 7 mm. According to the obtained results, the Nusselt number improves with an increase in Reynolds number and concentration of nanopowders. The same result is observed with increasing the magnetic field strength. Moreover, the friction factor of nanofluids is more than that of pure water due to the presence of solid nanoparticles. According to the obtained results, the magnetic field does not impose a significant increase in the amount of friction factor. Considering heat transfer enhancement and friction factor together with a parameter named performance index, it is revealed that privilege of using ferrofluids (improving heat transfer) far outweighs their demerit (increasing friction factor) and the ferrofluids investigated in this paper are capable to be utilized in practical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700