Ultrabroad Band Rainbow Capture and Releasing in Graded Chemical Potential Distributed Graphene Monolayer
详细信息    查看全文
  • 作者:Weibin Qiu ; Xianhe Liu ; Jing Zhao ; Yixin Huang ; Houbo Chen ; Bin Li…
  • 关键词:Rainbow capture ; Graphene ; Graded chemical potential ; Tunable ; Broadband
  • 刊名:Plasmonics
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:10
  • 期:5
  • 页码:1023-1028
  • 全文大小:671 KB
  • 参考文献:1.Baba T (2008) Slow light in photonic crystals. Nat Photonics 2(8):465-73CrossRef
    2.Gan Q, Ding YJ, Bartoli FJ (2009) “Rainbow-trapping and releasing at telecommunication wavelengths. Phys Rev Lett 102(5):56801CrossRef
    3.Liu C, Dutton Z, Behroozi CH, Hau LV (2001) Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409(6819):490-93CrossRef
    4.Lukin MD, Imamo?lu A (2001) Controlling photons using electromagnetically induced transparency. Nature 413(6853):273-76CrossRef
    5.Hau LV, Harris SE, Dutton Z, Behroozi CH (1999) Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397(6720):594-98CrossRef
    6.Kash MM, Sautenkov VA, Zibrov AS, Hollberg L, Welch GR, Lukin MD, Rostovtsev Y, Fry ES, Scully MO (1999) Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys Rev Lett 82(26):5229CrossRef
    7.Yanik MF, Fan S (2004) Stopping light all optically. Phys Rev Lett 92(8):83901CrossRef
    8.Vlasov YA, O’Boyle M, Hamann HF, McNab SJ (2005) Active control of slow light on a chip with photonic crystal waveguides. Nature 438(7064):65-9CrossRef
    9.Okawachi Y, Bigelow MS, Sharping JE, Zhu Z, Schweinsberg A, Gauthier DJ, Boyd RW, Gaeta AL (2005) Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys Rev Lett 94(15):153902CrossRef
    10.Lin Y, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu H, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327(5966):662CrossRef
    11.Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666-69CrossRef
    12.Liao L, Lin Y, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang KL, Huang Y, Duan X (2010) High-speed graphene transistors with a self-aligned nanowire gate. Nature 467(7313):305-08CrossRef
    13.Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4(9):611-22CrossRef
    14.Avouris P (2010) Graphene: electronic and photonic properties and devices. Nano Lett 10(11):4285-294CrossRef
    15.Lim G, Chen Z, Clark J, Goh RG, Ng W, Tan H, Friend RH, Ho PK, Chua L (2011) Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat Photonics 5(9):554-60CrossRef
    16.Zhao J, Liu X, Qiu W, Ma Y, Huang Y, Wang J, Qiang K, Pan J (2014) Surface-plasmon-polariton whispering-gallery mode analysis of the graphene monolayer coated InGaAs nanowire cavity. Opt Express 22(5):5754-761CrossRef
    17.Zhao J, Qiu W, Huang Y, Wang J, Kan Q, Pan J (2014) Investigation of plasmonic whispering-gallery mode characteristics for graphene monolayer coated dielectric nanodisks. Opt Lett 39(19):5527-530CrossRef
    18.Bao Q, Zhang H, Wang B, Ni Z, Lim CHYX, Wang Y, Tang DY, Loh KP (2011) Broadband graphene polarizer. Nat Photonics 5(7):411-15CrossRef
    19.Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474(7349):64-7CrossRef
    20.Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5):3677-694CrossRef
    21.Koppens FH, Chang DE, Garcia De Abajo FJ (2011) Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett 11(8):3370-377CrossRef
    22.Chen L, Zhang T, Li X, Wang G (2013) Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate. Opt Express 21(23):28628-8637CrossRef
    23.Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5(10):722-26CrossRef
    24.Efetov DK, Kim P (2010) Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys Rev Lett 105(25):256805CrossRef
    25.Chen P, Alù A (2011) Atomically thin surface cloak using graphene monolayers. ACS Nano 5(7):5855-863CrossRef
    26.Wang B, Zhang X, Yuan X, Teng J (2012) Optical coupling of surface plasmons between graphene sheets. Appl Phys Lett 100(13):131111CrossRef
    27.Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291-294CrossRef
    28.Mikhailov SA, Ziegler K (2007) New electromagnetic mode in graphene. Phys Rev Lett 99(1):16803CrossRef
    29.Reza A, Dignam MM, Hughes S (2008) Can light be stopped in realistic metamaterials. Nature 455(7216):E10–E11CrossRef
    30.Chen L, Wang GP, Gan Q, Bartoli FJ (2009) Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes. Phys Rev B 80(16):161-61106
    31.Kruglyak VV, Hicken RJ, Ali M, Hickey BJ, Pym A, Tanner BK (2005) Measurement of hot electron momentum relaxation times in metals by fem
  • 作者单位:Weibin Qiu (1)
    Xianhe Liu (1)
    Jing Zhao (1)
    Yixin Huang (1)
    Houbo Chen (1)
    Bin Li (1)
    Jia-Xian Wang (1)
    Qiang Kan (2)
    Jiao-Qing Pan (2)

    1. College of Information Science and Engineering, Huaqiao University, No.668, Jimei Avenue, Jimei, Xiamen, 361021, China
    2. Institute of Semiconductors, Chinese Academy of Science, No.35A, Qinghua East Road, Haidian, Beijing, 100086, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
We propose and numerically analyze a scheme to trap a broadband surface plasmon polariton (SPP) wave on a sheet of monolayer graphene with gradient chemical potential distribution. Different frequency components of the incident wave are trapped at different locations according to the chemical potential, resulting in “rainbow trapping-effect. By appropriately tuning the chemical potential distribution over the graphene sheet, graphene conductivity distribution is modified so that the trapped SPP wave is released. In the proposed structure, the group velocity of the trapped SPP waves is as low as the 10? times of the light speed in free space, and the lifetime of the trapped SPP wave is 3.14 ps when the relaxation of the graphene is 0.5 ps. This slow light system offers advantages simultaneously including broadband operation, ultracompact footprint, and dynamic control of group velocity without any complicated and expensive device geometry engineering. Keywords Rainbow capture Graphene Graded chemical potential Tunable Broadband

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700