Surface Marker Epithelial Cell Adhesion Molecule and E-cadherin Facilitate the Identification and Selection of Induced Pluripotent Stem Cells
详细信息    查看全文
  • 作者:Hsin-Fu Chen (1) (2)
    Ching-Yu Chuang (4)
    Wen-Chih Lee (3) (8)
    Hsiang-Po Huang (5)
    Han-Chung Wu (3)
    Hong-Nerng Ho (1) (2)
    Yu-Ju Chen (6)
    Hung-Chih Kuo (3) (7) (8) (9)
  • 关键词:Induced pluripotent stem cells ; EpCAM ; E ; cadherin ; Reprogramming ; Embryonic stem cells
  • 刊名:Stem Cell Reviews and Reports
  • 出版年:2011
  • 出版时间:September 2011
  • 年:2011
  • 卷:7
  • 期:3
  • 页码:722-735
  • 全文大小:1177KB
  • 参考文献:1. Kao, C. F., Chuang, C. Y., Chen, C. H., & Kuo, H. C. (2008). Human pluripotent stem cells: current status and future perspectives. / The Chinese Journal of Physiology, 51, 214鈥?25.
    2. Leeb, C., Jurga, M., McGuckin, C., Moriggl, R., & Kenner, L. (2010). Promising new sources for pluripotent stem cells. / Stem Cell Reviews, 6, 15鈥?6. CrossRef
    3. Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. / Cell, 131, 861鈥?72. CrossRef
    4. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. / Cell, 126, 663鈥?76. CrossRef
    5. Yamanaka, S. (2009). A fresh look at iPS cells. / Cell, 137, 13鈥?7. CrossRef
    6. Wang, Y., Mah, N., Prigione, A., Wolfrum, K., Andrade-Navarro, M. A., & Adjaye, J. (2010). A transcriptional roadmap to the induction of pluripotency in somatic cells. / Stem Cell Reviews, 6, 282鈥?96. CrossRef
    7. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. / Science, 322, 945鈥?49. CrossRef
    8. Yu, J., Hu, K., Smuga-Otto, K., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. / Science, 324, 797鈥?01. CrossRef
    9. Meissner, A., Wernig, M., & Jaenisch, R. (2007). Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. / Nature Biotechnology, 25, 1177鈥?181. CrossRef
    10. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. / Nature, 448, 313鈥?17. CrossRef
    11. Wernig, M., Meissner, A., Foreman, R., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. / Nature, 448, 318鈥?24. CrossRef
    12. Tokuzawa, Y., Kaiho, E., Maruyama, M., et al. (2003). Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. / Molecular and Cellular Biology, 23, 2699鈥?708. CrossRef
    13. Loh, Y. H., Wu, Q., Chew, J. L., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. / Nature Genetics, 38, 431鈥?40. CrossRef
    14. Schmelzer, E., Zhang, L., Bruce, A., et al. (2007). Human hepatic stem cells from fetal and postnatal donors. / The Journal of Experimental Medicine, 204, 1973鈥?987. CrossRef
    15. Stingl, J., Raouf, A., Emerman, J. T., & Eaves, C. J. (2005). Epithelial progenitors in the normal human mammary gland. / Journal of Mammary Gland Biology and Neoplasia, 10, 49鈥?9. CrossRef
    16. Went, P., Vasei, M., Bubendorf, L., et al. (2006). Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. / British Journal of Cancer, 94, 128鈥?35. CrossRef
    17. Schmelzer, E., Wauthier, E., & Reid, L. M. (2006). The phenotypes of pluripotent human hepatic progenitors. / Stem Cells, 24, 1852鈥?858. CrossRef
    18. Dan, Y. Y., Riehle, K. J., Lazaro, C., et al. (2006). Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. / Proceedings of the National Academy of Sciences of the United States of America, 103, 9912鈥?917. CrossRef
    19. Anderson, R., Schaible, K., Heasman, J., & Wylie, C. (1999). Expression of the homophilic adhesion molecule, Ep-CAM, in the mammalian germ line. / Journal of Reproduction and Fertility, 116, 379鈥?84. CrossRef
    20. Sundberg, M., Jansson, L., Ketolainen, J., et al. (2009). CD marker expression profiles of human embryonic stem cells and their neural derivatives, determined using flow-cytometric analysis, reveal a novel CD marker for exclusion of pluripotent stem cells. / Stem Cell Research, 2, 113鈥?24. CrossRef
    21. Kolle, G., Ho, M., Zhou, Q., et al. (2009). Identification of human embryonic stem cell surface markers by combined membrane-polysome translation state array analysis and immunotranscriptional profiling. / Stem Cells, 27, 2446鈥?456. CrossRef
    22. Gonzalez, B., Denzel, S., Mack, B., Conrad, M., & Gires, O. (2009). EpCAM is involved in maintenance of the murine embryonic stem cell phenotype. / Stem Cells, 27, 1782鈥?791. CrossRef
    23. Ng, V. Y., Ang, S. N., Chan, J. X., & Choo, A. B. (2010). Characterization of epithelial cell adhesion molecule as a surface marker on undifferentiated human embryonic stem cells. / Stem Cells, 28, 29鈥?5. CrossRef
    24. Lu, T. Y., Lu, R. M., Liao, M. Y., et al. (2010). Epithelial cell adhesion molecule regulation is associated with the maintenance of the undifferentiated phenotype of human embryonic stem cells. / The Journal of Biological Chemistry, 285, 8719鈥?732. CrossRef
    25. Tang, A., Eller, M. S., Hara, M., Yaar, M., Hirohashi, S., & Gilchrest, B. A. (1994). E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. / Journal of Cell Science, 107(Pt 4), 983鈥?92.
    26. Soncin, F., Mohamet, L., Eckardt, D., et al. (2009). Abrogation of E-cadherin-mediated cell-cell contact in mouse embryonic stem cells results in reversible LIF-independent self-renewal. / Stem Cells, 27, 2069鈥?080. CrossRef
    27. Li, Z., Qiu, D., Sridharan, I., et al. (2010). Spatially resolved quantification of E-cadherin on target hES cells. / The Journal of Physical Chemistry, 114, 2894鈥?900.
    28. Li, L., Wang, S., Jezierski, A., et al. (2010). A unique interplay between Rap1 and E-cadherin in the endocytic pathway regulates self-renewal of human embryonic stem cells. / Stem Cells, 28, 247鈥?57. CrossRef
    29. Huang, H. P., Yu, C. Y., Chen, H. F., et al. (2010). Factors from human embryonic stem cell-derived fibroblast-like cells promote topology-dependent hepatic differentiation in primate embryonic and induced pluripotent stem cells. / The Journal of Biological Chemistry, 285, 33510鈥?3519. CrossRef
    30. Chen, H. F., Chuang, C. Y., Shieh, Y. K., Chang, H. W., Ho, H. N., & Kuo, H. C. (2009). Novel autogenic feeders derived from human embryonic stem cells (hESCs) support an undifferentiated status of hESCs in xeno-free culture conditions. / Human Reproduction, 24, 1114鈥?125. CrossRef
    31. Chen, H. F., Kuo, H. C., Chien, C. L., et al. (2007). Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation. / Human Reproduction, 22, 567鈥?77. CrossRef
    32. Cotterman, R., & Knoepfler, P. S. (2009). N-Myc regulates expression of pluripotency genes in neuroblastoma including lif, klf2, klf4, and lin28b. / PLoS ONE, 4, e5799. CrossRef
    33. Malynn, B. A., de Alboran, I. M., O鈥橦agan, R. C., et al. (2000). N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. / Genes & Development, 14, 1390鈥?399.
    34. Blelloch, R., Venere, M., Yen, J., & Ramalho-Santos, M. (2007). Generation of induced pluripotent stem cells in the absence of drug selection. / Cell Stem Cell, 1, 245鈥?47. CrossRef
    35. Ruau, D., Ensenat-Waser, R., Dinger, T. C., et al. (2008). Pluripotency associated genes are reactivated by chromatin-modifying agents in neurosphere cells. / Stem Cells, 26, 920鈥?26. CrossRef
    36. Munz, M., Kieu, C., Mack, B., Schmitt, B., Zeidler, R., & Gires, O. (2004). The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. / Oncogene, 23, 5748鈥?758. CrossRef
    37. Sridharan, R., Tchieu, J., Mason, M. J., et al. (2009). Role of the murine reprogramming factors in the induction of pluripotency. / Cell, 136, 364鈥?77. CrossRef
    38. Boyer, L. A., Lee, T. I., Cole, M. F., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. / Cell, 122, 947鈥?56. CrossRef
    39. Brambrink, T., Foreman, R., Welstead, G. G., et al. (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. / Cell Stem Cell, 2, 151鈥?59. CrossRef
    40. Hanna, J., Saha, K., Pando, B., et al. (2009). Direct cell reprogramming is a stochastic process amenable to acceleration. / Nature, 462, 595鈥?01. CrossRef
    41. Takeichi, M. (1990). Cadherins: a molecular family important in selective cell-cell adhesion. / Annual Review of Biochemistry, 59, 237鈥?52. CrossRef
    42. Takeichi, M. (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. / Science, 251, 1451鈥?455. CrossRef
    43. Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D., & Nusse, R. (1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. / Cell, 50, 649鈥?57. CrossRef
    44. Ozawa, M., Baribault, H., & Kemler, R. (1989). The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. / The EMBO Journal, 8, 1711鈥?717.
    45. Fukunaga, Y., Liu, H., Shimizu, M., Komiya, S., Kawasuji, M., & Nagafuchi, A. (2005). Defining the roles of beta-catenin and plakoglobin in cell-cell adhesion: isolation of beta-catenin/plakoglobin-deficient F9 cells. / Cell Structure and Function, 30, 25鈥?4. CrossRef
    46. Miyabayashi, T., Teo, J. L., Yamamoto, M., McMillan, M., Nguyen, C., & Kahn, M. (2007). Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. / Proceedings of the National Academy of Sciences of the United States of America, 104, 5668鈥?673. CrossRef
  • 作者单位:Hsin-Fu Chen (1) (2)
    Ching-Yu Chuang (4)
    Wen-Chih Lee (3) (8)
    Hsiang-Po Huang (5)
    Han-Chung Wu (3)
    Hong-Nerng Ho (1) (2)
    Yu-Ju Chen (6)
    Hung-Chih Kuo (3) (7) (8) (9)

    1. Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
    2. Graduate Institute of Clinical Genomics, College of Medicine, National Taiwan University, Taipei, Taiwan
    4. Genomics Research Center, Academia Sinica, Taipei, Taiwan
    3. Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec.聽2, Academia Road, Nankang, Taipei, Taiwan
    8. Institute of Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
    5. Division of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
    6. Institute of Chemistry, Academia Sinica, Taipei, Taiwan
    7. Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
    9. Stem Cell Program, Genomics Research Center, Academia Sinica, No. 128, Sec.聽2, Academia Road, Nankang, Taipei, Taiwan
文摘
The derivation of induced pluripotent stem cells (iPSCs) requires not only efficient reprogramming methods, but also reliable markers for identification and purification of iPSCs. Here, we demonstrate that surface markers, epithelial cells adhesion molecule (EpCAM) and epithelial cadherin (E-cadherin) can be used for efficient identification and/or isolation of reprogrammed mouse iPSCs. By viral transduction of Oct4, Sox2, Klf4 and n- or c-Myc into mouse embryonic fibroblasts, we observed that the conventional mouse embryonic stem cell (mESC) markers, alkaline phosphatase (AP) and stage-specific embryonic antigen 1 (SSEA1), were expressed in incompletely reprogrammed cells that did not express all the exogenous reprogramming factors or failed to acquire pluripotent status even though exogenous reprogramming factors were expressed. EpCAM and E-cadherin, however, remained inactivated in these cells. Expression of EpCAM and E-cadherin correlated with the activation of Nanog and endogenous Oct4, and was only seen in the successfully reprogrammed iPSCs. Furthermore, purification of EpCAM-expressing cells at late reprogramming stage by FACS enriched the Nanog-expressing cell population suggesting the feasibility of selecting successful reprogrammed mouse iPSCs by EpCAM expression. We have thus identified new surface markers that can efficiently identify successfully reprogrammed iPSCs and provide an effective means for iPSC isolation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700