A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5
详细信息    查看全文
  • 作者:Hsin-Liang Chen (1)
    Yo-Chia Chen (2)
    Mei-Yeh Jade Lu (1)
    Jui-Jen Chang (1) (3)
    Hiaow-Ting Christine Wang (3)
    Huei-Mien Ke (1) (7)
    Tzi-Yuan Wang (1)
    Sz-Kai Ruan (1)
    Tao-Yuan Wang (1)
    Kuo-Yen Hung (3)
    Hsing-Yi Cho (4) (5) (6)
    Wan-Ting Lin (6)
    Ming-Che Shih (4) (6) (8)
    Wen-Hsiung Li (1) (3) (8) (9)
  • 关键词:Endoglucanase ; β ; glucosidase ; Neocallimastix patriciarum ; Rumen fungi ; Simultaneous saccharification and fermentation
  • 刊名:Biotechnology for Biofuels
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:5
  • 期:1
  • 全文大小:565KB
  • 参考文献:1. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. / Microbiol Mol Biol Rev 2002,66(3):506-77. CrossRef
    2. Theodorou MK, Longland AC, Dhanoa MS, Lowe SE, Trinci APJ: Growth of Neocallimastix sp. strain R1: on Italian ryegrass hay: removal of neutral sugars from plant cell walls. / Appl Environ Microbiol 1989,55(6):1363-367.
    3. Da-Silva R, Gomes E, Franco CML: Pectinases, hemicelulase e cellulases substrate, production application no processamento de alimentos. / Bol SBCTA 1997, 31:249-50.
    4. Wubah DA: Anaerobic zoosporic fungi associated with animals. In Biodiversity of Fungi: Inventory and Monotoring Methods. In . Edited by: Mueller GM, Bills GF, Foster MS. Elsevier Academic Press, Burlington, MA; 2004:501-10. CrossRef
    5. Woodward J, Lima M, Lee NE: The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. / Biochem J 1982,255(3):895-99.
    6. Leclerc MAA, Ratomahenina R, Galzy P: Yeast β-glucosidases. / Biotechnol Genet Eng Rev 1987, 5:269-95.
    7. Bhat MK, Bhat S: Cellulose degrading enzymes and their potential industrial applications. / Biotechnol Adv 1997,15(3-):583-20. CrossRef
    8. Shinoyama HTV, Ando A, Fujii T, Sasaki M, Doi Y, Yasui T: Enzymatic synthesis of useful alkyl-β-glucosides. / Agri Biol Chem 1991, 55:1679-681. CrossRef
    9. Saha BC, Freer SN, Bothast RJ: Production, purification, and properties of a thermostable beta-glucosidase from a color variant strain of Aureobasidium pullulans. / Appl Environ Microbiol 1994,60(10):3774-780.
    10. Henrissat B: A classification of glycosyl hydrolases based on amino acid sequence similarities. / Biochem J 1991,280(Pt 2):309-16.
    11. Henrissat B: Glycosidase families. / Biochem Soc Trans 1998,26(2):153-56.
    12. Dan S, Marton I, Dekel M, Bravdo BA, He S, Withers SG, Shoseyov O: Cloning, expression, characterization, and nucleophile identification of family 3, Aspergillus niger β-glucosidase. / J Biol Chem 2000,275(7):4973-980. CrossRef
    13. Claeyssens M, Van Tilbeurgh H, Tomme P, Wood TM, McCrae I: Fungal cellulase systems. Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. / Biochem J 1989,261(3):819-26.
    14. Eriksson KEL, Blanchette RA, Ander P: / Microbial and enzymatic degradation of wood and wood components. Springer Verlag, Berlin/Heidelberg, Germany; 1990. CrossRef
    15. Uzcategui E, Johansson G, Ek B, Pettersson G: The 1,4-β-D-glucan glucanohydrolases from Phanerochaete chrysosporium. Reassessment of their significance in cellulose degradation mechanisms. / J Biotechnol 1991,21(1-):143-59. CrossRef
    16. Trinci APJ, Davies DR, Gull K, Lawrence MI, Nielsen BB, Rickers A, Theodorou MK: Anaerobic fungi in herbivorous animals. / Mycol Res 1994,96(2):129-52. CrossRef
    17. Selinger LB, Forsberg CW, Cheng KJ: The rumen: a unique source of enzymes for enhancing livestock production. / Anaerobe 1996, 2:263-84. CrossRef
    18. Duan CJ, Xian L, Zhao GC, Feng Y, Pang H, Bai XL, Tang JL, Ma QS, Feng JX: Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. / J Appl Microbiol 2009,107(1):245-26. CrossRef
    19. Wang TY, Chen HL, Lu MY, Chen YC, Sung HM, Mao CT, Cho HY, Ke HM, Hwa TY, Ruan SK, Hung KY, Chen CK, Li JY, Wu YC, Chen YH, Chou SP, Tsai YW, Chu TC, Shih CC, Li WH, Shih MC: Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. / Biotechnol Biofuels 2011, 4:24. CrossRef
    20. Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G: Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. / Proc Natl Acad Sci USA 1995,92(15):7090-094. CrossRef
    21. Makoto M, Isao O, Sakuzo F, Ichiro Y: Nucleotide sequences of Saccharomycopsis fibuligera genes for extracellular β-glucosidases as expressed in Saccharomyces cerevisiae. / Appl Microbiol Biotechnol 1988,54(12):3147-155.
    22. Wong WK, Ali A, Chan WK, Ho V, Lee NT: The cloning, expression and characterization of a cellobiase gene encoding a secretory enzyme from Cellulomonas biazotea. / Gene 1998, 207:79-6. CrossRef
    23. Jeya M, Joo AR, Lee KM, Tiwari MK, Lee KM, Kim SH, Lee JK: Characterization of beta-glucosidase from a strain of Penicillium purpurogenum KJS506. / Appl Microbiol Biotechnol 2010,86(5):1473-484. CrossRef
    24. Harnpicharnchai P, Champreda V, Sornlake W, Eurwilaichitr L: A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. / Protein Express Purif 2009,67(2):61-9. CrossRef
    25. Kim CH, Kim DS: Purification and specificity of a specific endo-beta-1,4-β -glucanase (Avicelase-II) resembling exo-cellobio-hydrolase from Bacillus circulans. / Enzyme Microbiol Technol 1995,17(3):248-54. CrossRef
    26. Meinke A, Damude HG, Tomme P, Kwan E, Kilburn DG, Miller RC, Warren RA, Gilkes NR: Enhancement of the endo-b-1,4-glucanase activity of an exocellobiohydrolase by deletion of a surface loop. / J Biol Chem 1995,270(9):4383-386. CrossRef
    27. Tomme P, Warren RAJ, Gilkes NR: Cellulose hydrolysis by bacteria and fungi. / Adv Microbiol Physiol 1995, 37:1-1. CrossRef
    28. Rubini MR, Dillon AJP, Kyaw CM, Faria FP, Po?as-Fonseca MJ, Silva-Pereira I: Cloning, characterization and heterologous expression of the first Penicillium echinulatum cellulase gene. / J Appl Microbiol 2009,108(4):1187-198. CrossRef
    29. Yeoh HH, Tan TK, Koh SK: Kinetic propeties of β-glucosidases from Aspergillus ornatus. / Appl Microbiol Biotechnol 1986, 25:25-8. CrossRef
    30. Toonkool P, Metheenukul P, Sujiwattanarat P, Paiboon P, Tongtubtim N, Ketudat-Cairns M, Ketudat-Cairns J, Svasti J: Expression and purification of dalcochinase, a β-glucosidase from Dalbergia cochinchinensis Pierre, in yeast and bacterial hosts. / Protein Expr Purif 2006,48(2):195-04. CrossRef
    31. Shipkowski S, Brenchley JE: Characterization of an unusual cold-active β-glucosidase belonging to family 3 of the glycoside hydrolases from the psychrophilic isolate Paenibacillus sp. Strain C7. / Appl Environ Microbiol 2005,71(8):4225-232. CrossRef
    32. Chauvaux S, Beguin P, Aubert JP, Bhat KM, Gow LA, Wood TM, Bairoch A: Calcium-binding affinity and calcium-enhanced activity of Clostridium thermocellum endoglucanase D. / Biochem J 1990,265(1):261-55.
    33. Wallecha A, Mishra S: Purification and characterization of two β-glucosidases from a thermo-tolerant yeast Pichia etchellsii. / Biochim Biophys Acta 2003,1649(1):74-4. CrossRef
    34. Rouvinen J, Bergfors T, Teeri T, Knowles JK, Jones TA: Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. / Science 1990,249(4967):380-86. CrossRef
    35. Copa-Patino JL, Broda P: A Phanerochaete chrysosporium β-D-glucosidase/β-Dxylosidase with specificity for (1?→-)- β-D-glucan linkages. / Carbohydrate Res 1994, 253:265-75. CrossRef
    36. Ohmiya Y, Takeda T, Nakamura S, Sakai F, Hayashi T: Purification and properties of a wall-bound endo-1,4-b-glucanase from suspension-cultured poplar cells. / Plant Cell Physiol 1995, 36:607-14.
    37. Hsieh MC, Graham TL: Partial purification and characterization of a soybean β-glucosidase with high specific activity towards isoflavone conjugates. / Phytochemistry 2001,58(7):995-005. CrossRef
    38. Champreda V, Kanokratana P, Sriprang R, Tanapongpipat S, Eurwilaichitr L: Purification, biochemical characterization, and gene cloning of a new extracellular thermotolerant and glucose tolerant maltooligosaccharide-forming alpha-amylase from an endophytic ascomycete Fusicoccum sp. BCC4124. / Biosci Biotechnol Biochem 2007,71(8):2010-020. CrossRef
    39. Gifford JL, Walsh MP, Vogel HJ: Structures and metal-ion-binding properties of the Ca2+-binding helix–loop–helix EF-hand motifs. / Biochem J 2007, 405:199-21. CrossRef
    40. Ho CY, Chang JJ, Huang YR, Wu YC, Li WH, Shih MC, Huang CC: Isolation and characterization of a flavor production kefir yeast Kluyveromyces marxianus KY3: a potential strain for developing co-cultural consolidated bioprocess. / Biomass Bioenergy 2011. revised
    41. Lynd LR, van Zyl WH, McBride JE, Laser M: Consolidated bioprocessing of cellulosic biomass: an update. / Curr Opin Biotechnol 2005,16(5):577-83. CrossRef
    42. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. / Nature 1970,227(5259):680-85. CrossRef
    43. Feng Y, Duan CJ, Pang H, Mo XC, Wu CF, Yu Y, Hu YL, Wei J, Tang JL, Feng JX: Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. / Appl Microbiol Biotechnol 2007,75(2):319-28. CrossRef
  • 作者单位:Hsin-Liang Chen (1)
    Yo-Chia Chen (2)
    Mei-Yeh Jade Lu (1)
    Jui-Jen Chang (1) (3)
    Hiaow-Ting Christine Wang (3)
    Huei-Mien Ke (1) (7)
    Tzi-Yuan Wang (1)
    Sz-Kai Ruan (1)
    Tao-Yuan Wang (1)
    Kuo-Yen Hung (3)
    Hsing-Yi Cho (4) (5) (6)
    Wan-Ting Lin (6)
    Ming-Che Shih (4) (6) (8)
    Wen-Hsiung Li (1) (3) (8) (9)

    1. Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
    2. Department of Biological Science & Technology, National Pingtung University of Science & Technology, Neipu Hsiang, Pingtung, 91201, Taiwan
    3. Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
    7. Program in Microbial Genomics, National Chung-Hsing University, Taichung, 402, Taiwan
    4. Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University -Academia Sinica, Taipei, 115, Taiwan
    5. Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 402, Taiwan
    6. Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
    8. Biotechnology Center, National Chung-Hsing University, Taichung, 402, Taiwan
    9. Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
  • ISSN:1754-6834
文摘
Background Cellulose, which is the most abundant renewable biomass on earth, is a potential bio-resource of alternative energy. The hydrolysis of plant polysaccharides is catalyzed by microbial cellulases, including endo-β-1,4-glucanases, cellobiohydrolases, cellodextrinases, and β-glucosidases. Converting cellobiose by β-glucosidases is the key factor for reducing cellobiose inhibition and enhancing the efficiency of cellulolytic enzymes for cellulosic ethanol production. Results In this study, a cDNA encoding β-glucosidase was isolated from the buffalo rumen fungus Neocallimastix patriciarum W5 and is named NpaBGS. It has a length of 2,331 bp with an open reading frame coding for a protein of 776 amino acid residues, corresponding to a theoretical molecular mass of 85.1 kDa and isoelectric point of 4.4. Two GH3 catalytic domains were found at the N and C terminals of NpaBGS by sequence analysis. The cDNA was expressed in Pichia pastoris and after protein purification, the enzyme displayed a specific activity of 34.5 U/mg against cellobiose as the substrate. Enzymatic assays showed that NpaBGS was active on short cello-oligosaccharides from various substrates. A weak activity in carboxymethyl cellulose (CMC) digestion indicated that the enzyme might also have the function of an endoglucanase. The optimal activity was detected at 40°C and pH 5?~-, showing that the enzyme prefers a weak acid condition. Moreover, its activity could be enhanced at 50°C by adding Mg2+ or Mn2+ ions. Interestingly, in simultaneous saccharification and fermentation (SSF) experiments using Saccharomyces cerevisiae BY4741 or Kluyveromyces marxianus KY3 as the fermentation yeast, NpaBGS showed advantages in cell growth, glucose production, and ethanol production over the commercial enzyme Novo 188. Moreover, we showed that the KY3 strain engineered with the NpaNGS gene can utilize 2 % dry napiergrass as the sole carbon source to produce 3.32 mg/ml ethanol when Celluclast 1.5 L was added to the SSF system. Conclusion Our characterizations of the novel β-glucosidase NpaBGS revealed that it has a preference of weak acidity for optimal yeast fermentation and an optimal temperature of ~40°C. Since NpaBGS performs better than Novo 188 under the living conditions of fermentation yeasts, it has the potential to be a suitable enzyme for SSF.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700