iDrug: a web-accessible and interactive drug discovery and design platform
详细信息    查看全文
  • 作者:Xia Wang (1)
    Haipeng Chen (2)
    Feng Yang (2)
    Jiayu Gong (2)
    Shiliang Li (1)
    Jianfeng Pei (3)
    Xiaofeng Liu (1)
    Hualiang Jiang (1)
    Luhua Lai (3)
    Honglin Li (1) (2)

    1. Shanghai Key Laboratory of New Drug Design
    ; State Key Laboratory of Bioreactor Engineering ; School of Pharmacy ; East China University of Science and Technology ; Shanghai ; 200237 ; China
    2. School of Information Science and Engineering
    ; East China University of Science and Technology ; Shanghai ; 200237 ; China
    3. BNLMS
    ; Center for Quantitative Biology ; State Key Laboratory for Structural Chemistry of Unstable and Stable Species ; College of Chemistry and Molecular Engineering ; Peking University ; Beijing ; 100871 ; China
  • 关键词:Online drug design platform ; Cavity detection ; Pharmacophore search ; 3D similarity calculation ; Target prediction
  • 刊名:Journal of Cheminformatics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:6
  • 期:1
  • 全文大小:702 KB
  • 参考文献:1. Song, CM, Lim, SJ, Tong, JC (2009) Recent advances in computer-aided drug design. Brief Bioinform 10: pp. 579-591 CrossRef
    2. Jorgensen, WL (2004) The many roles of computation in drug discovery. Science 303: pp. 1813-1818 CrossRef
    3. Kellenberger, E, Foata, N, Rognan, D (2008) Ranking targets in structure-based virtual screening of three-dimensional protein libraries: methods and problems. J Chem Inf Model 48: pp. 1014-1025 CrossRef
    4. Li, YY, An, J, Jones, SJ (2011) A computational approach to finding novel targets for existing drugs. PLoS Comput Biol 7: pp. e1002139 CrossRef
    5. Nettles, JH, Jenkins, JL, Bender, A, Deng, Z, Davies, JW, Glick, M (2006) Bridging chemical and biological space: 鈥渢arget fishing鈥?using 2D and 3D molecular descriptors. J Med Chem 49: pp. 6802-6810 CrossRef
    6. Campillos, M, Kuhn, M, Gavin, A-C, Jensen, LJ, Bork, P (2008) Drug target identification using side-effect similarity. Science 321: pp. 263-266 CrossRef
    7. Liu, X, Jiang, H, Li, H (2011) SHAFTS: a hybrid approach for 3D molecular similarity calculation. 1. Method and assessment of virtual screening. J Chem Inf Model 51: pp. 2372-2385 CrossRef
    8. Yuan, Y, Pei, J, Lai, L (2011) LigBuilder 2: a practical de novo drug design approach. J Chem Inf Model 51: pp. 1083-1091 CrossRef
    9. Wolber, G, Langer, T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45: pp. 160-169 CrossRef
    10. Vainio, MJ, Puranen, JS, Johnson, MS (2009) ShaEP: molecular overlay based on shape and electrostatic potential. J Chem Inf Model 49: pp. 492-502 CrossRef
    11. Kurogi, Y, Guner, OF (2001) Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Curr Med Chem 8: pp. 1035-1055 CrossRef
    12. Stouch, TR (2012) The errors of our ways: taking account of error in computer-aided drug design to build confidence intervals for our next 25聽years. J Comput Aided Mol Des 26: pp. 125-134 CrossRef
    13. Lill, MA, Danielson, ML (2011) Computer-aided drug design platform using PyMOL. J Comput Aided Mol Des 25: pp. 13-19 CrossRef
    14. Li, H, Gao, Z, Kang, L, Zhang, H, Yang, K, Yu, K, Luo, X, Zhu, W, Chen, K, Shen, J, Wang, X, Jiang, H (2006) TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res 34: pp. W219-W224 CrossRef
    15. Gong, J, Cai, C, Liu, X, Ku, X, Jiang, H, Gao, D, Li, H (2013) ChemMapper: a versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method. Bioinformatics 29: pp. 1827-1829 CrossRef
    16. Koes, DR, Camacho, CJ (2012) ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res 40: pp. W409-W414 CrossRef
    17. Schmidtke, P, Le Guilloux, V, Maupetit, J, Tuffery, P (2010) fpocket: online tools for protein ensemble pocket detection and tracking. Nucleic Acids Res 38: pp. W582-W589 CrossRef
    18. Rarey, M (2012) Some thoughts on the 鈥淎鈥?in computer-aided molecular design. J Comput Aided Mol Des 26: pp. 113-114 CrossRef
    19. Douguet, D (2010) e-LEA3D: a computational-aided drug design web server. Nucleic Acids Res 38: pp. W615-W621 CrossRef
    20. Jayaram, B, Singh, T, Mukherjee, G, Mathur, A, Shekhar, S, Shekhar, V (2012) Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC Bioinforma 13: pp. S7 CrossRef
    21. Chen, J, Lai, L (2006) Pocket v. 2: further developments on receptor-based pharmacophore modeling. J Chem Inf Model 46: pp. 2684-2691 CrossRef
    22. Liu, X, Ouyang, S, Yu, B, Liu, Y, Huang, K, Gong, J, Zheng, S, Li, Z, Li, H, Jiang, H (2010) PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 38: pp. W609-W614 CrossRef
    23. Lu, W, Liu, X, Cao, X, Xue, M, Liu, K, Zhao, Z, Shen, X, Jiang, H, Xu, Y, Huang, J, Li, H (2011) SHAFTS: a hybrid approach for 3D molecular similarity calculation. 2. Prospective case study in the discovery of diverse p90 ribosomal S6 protein kinase 2 inhibitors to suppress cell migration. J Med Chem 54: pp. 3564-3574 CrossRef
    24. Bai, F, Liu, H, Tong, L, Zhou, W, Liu, L, Zhao, Z, Liu, X, Jiang, H, Wang, X, Xie, H (2012) Discovery of novel selective inhibitors for EGFR-T790M/L858R. Bioorg Med Chem Lett 22: pp. 1365-1370 CrossRef
    25. O鈥橞oyle, NM, Morley, C, Hutchison, GR (2008) Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit. Chem Cent J 2: pp. 5 CrossRef
    26. O鈥橞oyle, NM, Banck, M, James, CA, Morley, C, Vandermeersch, T, Hutchison, GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3: pp. 1-14 CrossRef
    27. Ihlenfeldt, W-D, Voigt, JH, Bienfait, B, Oellien, F, Nicklaus, MC (2002) Enhanced CACTVS browser of the Open NCI Database. J Chem Inf Comput Sci 42: pp. 46-57 CrossRef
    28. Irwin, JJ, Shoichet, BK (2005) ZINC鈥揳 free database of commercially available compounds for virtual screening. J Chem Inf Model 45: pp. 177-182 CrossRef
    29. Wishart, DS, Knox, C, Guo, AC, Cheng, D, Shrivastava, S, Tzur, D, Gautam, B, Hassanali, M (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36: pp. D901-D906 CrossRef
    30. Liu, T, Lin, Y, Wen, X, Jorissen, RN, Gilson, MK (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35: pp. D198-D201 CrossRef
    31. Wang, R, Fang, X, Lu, Y, Wang, S (2004) The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem 47: pp. 2977-2980 CrossRef
    32. Gao, Z, Li, H, Zhang, H, Liu, X, Kang, L, Luo, X, Zhu, W, Chen, K, Wang, X, Jiang, H (2008) PDTD: a web-accessible protein database for drug target identification. BMC Bioinforma 9: pp. 104 CrossRef
    33. Yuan, Y, Pei, J, Lai, L (2013) Binding site detection and druggability prediction of protein targets for structure- based drug design. Curr Pharm Des 19: pp. 2326-2333 CrossRef
    34. Li, J, Zhang, J, Chen, J, Luo, X, Zhu, W, Shen, J, Liu, H, Shen, X, Jiang, H (2006) Strategy for discovering chemical inhibitors of human cyclophilin A: focused library design, virtual screening, chemical synthesis and bioassay. J Comb Chem 8: pp. 326-337 CrossRef
    35. Wei, D, Jiang, X, Zhou, L, Chen, J, Chen, Z, He, C, Yang, K, Liu, Y, Pei, J, Lai, L (2008) Discovery of multitarget inhibitors by combining molecular docking with common pharmacophore matching. J Med Chem 51: pp. 7882-7888 CrossRef
    36. Liu, X, Xie, H, Luo, C, Tong, L, Wang, Y, Peng, T, Ding, J, Jiang, H, Li, H (2010) Discovery and SAR of thiazolidine-2, 4-dione analogues as insulin-like growth factor-1 receptor (IGF-1R) inhibitors via hierarchical virtual screening. J Med Chem 53: pp. 2661-2665 CrossRef
    37. Chen, Z, Wang, X, Zhu, W, Cao, X, Tong, L, Li, H, Xie, H, Xu, Y, Tan, S, Kuang, D (2011) Acenaphtho [1, 2-b] pyrrole-Based selective fibroblast growth factor receptors 1 (FGFR1) Inhibitors: design, synthesis, and biological activity. J Med Chem 54: pp. 3732-3745 CrossRef
    38. Liu, X, Bai, F, Ouyang, S, Wang, X, Li, H, Jiang, H (2009) Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation. BMC Bioinforma 10: pp. 101 CrossRef
    39. Bai, F, Liu, X, Li, J, Zhang, H, Jiang, H, Wang, X, Li, H (2010) Bioactive conformational generation of small molecules: a comparative analysis between force-field and multiple empirical criteria based methods. BMC Bioinforma 11: pp. 545 CrossRef
    40. Berman, HM, Westbrook, J, Feng, Z, Gilliland, G, Bhat, TN, Weissig, H, Shindyalov, IN, Bourne, PE (2000) The protein data bank. Nucleic Acids Res 28: pp. 235-242 CrossRef
    41. Zhou, W, Liu, X, Tu, Z, Zhang, L, Ku, X, Bai, F, Zhao, Z, Xu, Y, Ding, K, Li, H (2013) Discovery of Pteridin-7 (8聽H)-one-based irreversible inhibitors targeting the epidermal growth factor receptor (EGFR) Kinase T790M/L858R mutant. J Med Chem 56: pp. 7821-7837 CrossRef
    42. Symyx Technologies. MDL drug data report: Sci Tegic Accelrys Inc., the MDL Drug Data Report (MDDR). Database is available at http://www.accelrys.com/
    43. Dong, G, Wang, S, Miao, Z, Yao, J, Zhang, Y, Guo, Z, Zhang, W, Sheng, C (2012) New tricks for an old natural product: discovery of highly potent evodiamine derivatives as novel antitumor agents by systemic structure鈥揳ctivity relationship analysis and biological evaluations. J Med Chem 55: pp. 7593-7613 CrossRef
    44. Rohrer, SG, Baumann, K (2009) Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data. J Chem Inf Model 49: pp. 169-184 CrossRef
    45. Mysinger, MM, Carchia, M, Irwin, JJ, Shoichet, BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55: pp. 6582-6594 CrossRef
    46. Zou, J, Xie, H-Z, Yang, S-Y, Chen, J-J, Ren, J-X, Wei, Y-Q (2008) Towards more accurate pharmacophore modeling: multicomplex-based comprehensive pharmacophore map and most-frequent-feature pharmacophore model of CDK2. J Mol Graph Model 27: pp. 430-438 CrossRef
    47. Sanders, MP, Barbosa, AJ, Zarzycka, B, Nicolaes, GA, Klomp, JP, de Vlieg, J, Del Rio, A (2012) Comparative analysis of pharmacophore screening tools. J Chem Inf Model 52: pp. 1607-1620 CrossRef
    48. de Medina, P, Favre, G, Poirot, M (2004) Multiple targeting by the antitumor drug tamoxifen: a structure-activity study. Curr Med Chem Anticancer Agents 4: pp. 491-508 CrossRef
    49. De Medina, P, Paillasse, MR, Segala, G, Poirot, M, Silvente-Poirot, S (2010) Identification and pharmacological characterization of cholesterol-5, 6-epoxide hydrolase as a target for tamoxifen and AEBS ligands. Proc Natl Acad Sci 107: pp. 13520-13525 CrossRef
    50. Ramaswamy, B, Lu, Y, Teng, K-y, Nuovo, G, Li, X, Shapiro, CL, Majumder, S (2012) Hedgehog signaling is a novel therapeutic target in tamoxifen-resistant breast cancer aberrantly activated by PI3K/AKT pathway. Cancer Res 72: pp. 5048-5059 CrossRef
    51. Paavonen, T, Aronen, H, Pyrh脰Nen, S, Hajba, A, Andersson, L (1991) The effect of toremifene therapy on serum immunoglobulin levels in breast cancer. Apmis 99: pp. 849-853 CrossRef
    52. Favoni, RE, de Cupis, A (1998) Steroidal and nonsteroidal oestrogen antagonists in breast cancer: basic and clinical appraisal. Trends Pharmacol Sci 19: pp. 406-415 CrossRef
    53. Santner, SJ, Santen, RJ (1993) Inhibition of estrone sulfatase and 17尾-hydroxysteroid dehydrogenase by antiestrogens. J Steroid Biochem Mol Biol 45: pp. 383-390 CrossRef
    54. Levine, RM, Rubalcaba, E, Lippman, ME, Cowan, KH (1985) Effects of estrogen and tamoxifen on the regulation of dihydrofolate reductase gene expression in a human breast cancer cell line. Cancer Res 45: pp. 1644-1650
    55. Nuwaysir, EF, Daggett, DA, Jordan, VC, Pitot, HC (1996) Phase II enzyme expression in rat liver in response to the antiestrogen tamoxifen. Cancer Res 56: pp. 3704-3710
    56. Ritchie, GA (1980) The direct inhibition of prostaglandin synthetase of human breast cancer tumor tissue by tamoxifen. Recent Results Cancer Res 71: pp. 96-101
    57. Fleming, CD, Bencharit, S, Edwards, CC, Hyatt, JL, Tsurkan, L, Bai, F, Fraga, C, Morton, CL, Howard-Williams, EL, Potter, PM (2005) Structural insights into drug processing by human carboxylesterase 1: tamoxifen, mevastatin, and inhibition by benzil. J Mol Biol 352: pp. 165-177 CrossRef
    58. Rowlands, MG, Budworth, J, Jarman, M, Hardcastle, IR, McCague, R, Gescher, A (1995) Comparison between inhibition of protein kinase C and antagonism of calmodulin by tamoxifen analogues. Biochem Pharmacol 50: pp. 723-726 CrossRef
    59. Nilsson, UW, Garvin, S, Dabrosin, C (2007) MMP-2 and MMP-9 activity is regulated by estradiol and tamoxifen in cultured human breast cancer cells. Breast Cancer Res Ttreat 102: pp. 253-261 CrossRef
    60. Messiha, FS (1990) Leu-enkephalin, tamoxifen and ethanol interactions: effects on motility and hepatic ethanol metabolizing enzymes. Gen Pharmacol 21: pp. 45-48 CrossRef
    61. Lax, E, Rumstadt, F, Plasczyk, H, Peetz, A, Schriefers, H (1983) Antagonistic action of estrogens, flutamide, and human growth hormone on androgen-induced changes in the activities of some enzymes of hepatic steroid metabolism in the rat. Endocrinology 113: pp. 1043-1055 CrossRef
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Computer Applications in Chemistry
    Theoretical and Computational Chemistry
    Computational Biology/Bioinformatics
    Documentation and Information in Chemistry
  • 出版者:Chemistry Central Ltd
  • ISSN:1758-2946
文摘
Background The progress in computer-aided drug design (CADD) approaches over the past decades accelerated the early-stage pharmaceutical research. Many powerful standalone tools for CADD have been developed in academia. As programs are developed by various research groups, a consistent user-friendly online graphical working environment, combining computational techniques such as pharmacophore mapping, similarity calculation, scoring, and target identification is needed. Results We presented a versatile, user-friendly, and efficient online tool for computer-aided drug design based on pharmacophore and 3D molecular similarity searching. The web interface enables binding sites detection, virtual screening hits identification, and drug targets prediction in an interactive manner through a seamless interface to all adapted packages (e.g., Cavity, PocketV.2, PharmMapper, SHAFTS). Several commercially available compound databases for hit identification and a well-annotated pharmacophore database for drug targets prediction were integrated in iDrug as well. The web interface provides tools for real-time molecular building/editing, converting, displaying, and analyzing. All the customized configurations of the functional modules can be accessed through featured session files provided, which can be saved to the local disk and uploaded to resume or update the history work. Conclusions iDrug is easy to use, and provides a novel, fast and reliable tool for conducting drug design experiments. By using iDrug, various molecular design processing tasks can be submitted and visualized simply in one browser without installing locally any standalone modeling softwares. iDrug is accessible free of charge at http://lilab.ecust.edu.cn/idrug.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700