用户名: 密码: 验证码:
Analysis and experiment of transient filling flow into a rectangular microchannel on a rotating disk
详细信息    查看全文
  • 作者:Teng Shen ; Liu Huang ; Jiong Wang
  • 关键词:Transient flow ; Rectangular microchannel ; Centrifugal microfluidics ; Time ; dependent behaviors
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:20
  • 期:4
  • 全文大小:1,031 KB
  • 参考文献:Brenner T, Glatzel T, Zengerle R et al (2005) Frequency-dependent transversal flow control in centrifugal microfluidics. Lab Chip 5(2):146–150CrossRef
    Chen JM, Huang PC, Lin MG (2008) Analysis and experiment of capillary valves for microfluidics on a rotating disk. Microfluid Nanofluid 4:427–437CrossRef
    Cho H, Kim HY, Kang JY et al (2007) How the capillary burst microvalve works. J Colloid Interface Sci 306(2):379–385CrossRef
    Ducrée J, Haeberle S, Brenner T et al (2006) Patterning of flow and mixing in rotating radial microchannels. Microfluid Nanofluid 2(2):97–105CrossRef
    Ducrée J, Haeberle S, Lutz S et al (2007) The centrifugal microfluidic bio-disk platform. J Micromech Microeng 17(7):S103CrossRef
    Duffy DC, Gillis HL, Lin J et al (1999) Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays. Anal Chem 71(20):4669–4678CrossRef
    Garcia-Cordero JL, Basabe-Desmonts L, Ducrée J et al (2010) Liquid recirculation in microfluidic channels by the interplay of capillary and centrifugal forces. Microfluid Nanofluid 9(4–5):695–703CrossRef
    Geschke O, Klank H, Telleman P (2004) Microsystem engineering of lab-on-a-chip devices[M]. Wiley-vch, Weinheim
    Gorkin R, Park J, Siegrist J et al (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10(14):1758–1773CrossRef
    Haeberle S, Brenner T, Schlosser HP et al (2005) Centrifugal micromixery. Chem Eng Technol 28(5):613–616CrossRef
    Kim DS, Kwon TH (2006a) Modeling, analysis and design of centrifugal force driven transient filling flow into rectangular microchannel. Microsyst Technol 12(9):822–838CrossRef
    Kim DS, Kwon TH (2006b) Modeling, analysis and design of centrifugal force-driven transient filling flow into a circular microchannel. Microfluid Nanofluid 2(2):125–140CrossRef
    Kim J, Kido H, Rangel RH et al (2008) Passive flow switching valves on a centrifugal microfluidic platform. Sens Actuators B Chem 128(2):613–621CrossRef
    Leu TS, Chang PY (2004) Pressure barrier of capillary stop valves in micro sample separators. Sens Actuators A 115(2):508–515CrossRef
    Liu M, Zhang J, Liu Y et al (2008) Modeling of flow burst, flow timing in lab-on-a-CD systems and its application in digital chemical analysis. Chem Eng Technol 31(9):1328–1335CrossRef
    Madou MJ, Lee LJ, Daunert S et al (2001) Design and fabrication of CD-like microfluidic platforms for diagnostics: microfluidic functions. Biomed Microdevices 3(3):245–254CrossRef
    Madou M, Zoval J, Jia G et al (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628CrossRef
    Man PE, Mastrangelo CH, Burns MA et al (1998) Microfabricated capillarity-driven stop valve and sample injector. In: Proceedings of the eleventh annual international workshop on micro electro mechanical systems. MEMS 98. IEEE, pp 45–50
    Marliani G, Matzkeit M, Ram VIV (1997) Visualisation studies of the transition regime flow in a channel of varying cross section under the influence of Coriolis force. Exp Fluids 23(1):64–75CrossRef
    Maruyama T, Maeuchi T (2008) Centrifugal-force driven flow in cylindrical micro-channel. Chem Eng Sci 63(1):153–156CrossRef
    Moles DR (2002) Electroosmotic flow controlled microfluidic devices: US Patent 6,406,605
    Oh KW, Lee K, Ahn B et al (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3):515–545CrossRef
    Zeng J, Deshpande M, Greiner KB, Gilbert JR (2000) Fluidic capacitance model of capillary-driven stop valve. In: MEMS proceedings of ASME international mechanical engineering congress and exposition, Orlando
    Zoval JV, Madou MJ (2004) Centrifuge-based fluidic platforms. Proc IEEE 92(1):140–153CrossRef
  • 作者单位:Teng Shen (1)
    Liu Huang (1)
    Jiong Wang (1)

    1. School of Mechanical and Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu, China
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
In order to predict the time-dependent behaviors of the moving front in lab-on-a-CD systems or centrifugal pumping, an analytical expression and experimental methods of centrifugal-force-driven transient filling flow into a rectangular microchannel in centrifugal microfluidics are presented in this paper. Considering the effect of surface tension, and neglecting the effect of Coriolis force, the velocity profile, flow rate, the moving front displacement and the pressure distribution along the microchannel are characterized. Experiments are carried out using the image-capturing unit to measure the shift of the flow in rectangular microchannels. The flow characteristics in rectangular microchannels with different cross-sectional dimensions (200, 300 and 400 μm in width and 140, 240 and 300 μm in depth) and length (18 and 25 mm) under different rotational speed are investigated. According to the experimental data, the model can be more reasonable to predict the flow displacement with time, and the errors between theoretical and the experimental will decrease with increasing the cross-section size of the microchannel.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700