Characterization of diffusion-bonded joint between Al and Mg using a Ni interlayer
详细信息    查看全文
  • 作者:Jian Zhang ; Guo-Qiang Luo ; Qiang Shen ; Lian-Meng Zhang ; Zhi-Jun Huang
  • 刊名:Rare Metals
  • 出版年:2016
  • 出版时间:July 2016
  • 年:2016
  • 卷:35
  • 期:7
  • 页码:537-542
  • 全文大小:1,225 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Metallic Materials
    Chinese Library of Science
  • 出版者:Journal Publishing Center of University of Science and Technology Beijing, in co-publication with Sp
  • ISSN:1867-7185
  • 卷排序:35
文摘
Aluminum and magnesium were joined through diffusion bonding using Ni interlayer. The microstructure and mechanical performance of the Al/Ni/Mg joints at different temperatures was investigated by means of scanning electron microscope (SEM), electro-probe microanalyzer (EPMA), X-ray diffraction (XRD), Vickers hardness testing, and shear testing. The results show that the addition of Ni interlayer eliminates the formation of Mg–Al intermetallic compounds and improves the bonding strength of the Al/Mg joints. The Al/Ni/Mg joints are formed by the diffusion of Al, Ni and Mg, Ni. The microstructure at the joint interface from Al side to Mg side is Al substrate/Al–Ni reaction layer/Ni interlayer/Mg–Ni reaction layer/Mg substrate multilayer structure. The microhardness of the Mg–Ni reaction layer has the largest value of HV 255.0 owing to the existence of Mg2Ni phase. With the increase of bonding temperature, the shear strength of the joints increases firstly and then decreases. The Al/Ni/Mg joint bonds at 713 K for 90 min, exhibiting the maximum shear strength of 20.5 MPa, which is greater than that of bonding joint bonded directly or with Ag interlayer. The fracture of the joints takes place at the Mg–Ni interface rather than the Al–Ni interface, and the fracture way of the joints is brittle fracture.KeywordsAl–MgNi foilDiffusion bondingMicrostructureShear strength

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700