Texture of AZ31B magnesium alloy sheets produced by differential speed rolling technologies
详细信息    查看全文
  • 作者:Huaqiang Liu (1) Lhuaqiang@163.com
    Di Tang (1)
    Qingwu Cai (1)
    Zhen Li (1)
  • 关键词:differential speed rolling – ; wrought magnesium alloy – ; basal texture – ; recrystallization – ; speed ratio
  • 刊名:Rare Metals
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:31
  • 期:5
  • 页码:415-419
  • 全文大小:389.6 KB
  • 参考文献:1. Chen Z.H., Wrought Magnesium Alloy, The Press of Chemic Industry, Beijing, 2005: 6.
    2. Zhao H., Peng X.D., Wang Y.G., Yang Y., and Wei Q.Y., Research status about plasticity improvement of wrought magnesium alloys, Chinese Journal of Rare Metals, 2012, 36(1): 161.
    3. Ding R., Wang B.J., Ren C.H., and Liu C.R., Grain refinement and properties of AZ31 magnesium alloy sheets deformed by differential speed rolling, Chinese Journal of Rare Metals, 2010, 34(1): 34.
    4. Zhang S.M., Yang B.C, Xun J., Shi L.K., and Chen G.L., Effects of deformation parameters on microstructure and mechanical properties of magnesium alloy AZ31B, Rare Met., 2006, 25: 105.
    5. Kim W.J., Hong S.I., and Kim Y.S., Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing, Acta Materialia, 2003, 51(11): 3293.
    6. Kim K.H., Seo Y.M., and Yim C.D., The effect of rolling conditions on the microstructure and texture evolution of AZ31 Mg alloy sheets, Mater. Forum, 2005, 29: 530.
    7. Mukai T., Watanabe H., and Higashi K., Grain refinement of commercial magnesium alloys for high-strain-rate-super-plastic forming, Materials Science Forum, 2000, 350–351: 159.
    8. Wang S.R., Wang M., Ma R., Wang Y., and Wang Y.J., Microstructure and hot compression behavior of twin-roll-casting AZ41M magnesium alloy, Rare Met., 2010, 29(4): 396.
    9. Lee S., Chiang C., Leu J., and Chen Y., Superplastic elongation characteristic of fine grained magnesium alloy ZK60, Rare Met., 2010, 29(4): 421.
    10. Li Y.J., Zhang K., Zhang Y., Li X.G., and Ma M.L., Microstructural evolution and mechanical properties of Mg-5Y-5Gd-xNd-0.5Zr magnesium alloys at different states, Rare Met., 2010, 29(3): 317.
    11. Zhang K., Ma M.L., Li X.G., Li Y.J,, Liang L.C., and Bing M.F., Hot deformation behavior of Mg-7.22 Gd-4.84 Y-1.26 Nd-0.58Zr magnesium alloy, Rare Met., 2011, 30(1): 87.
    12. Watanabe H., Mukai T., and Ishikawa K., Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties, Journal of Materials Science, 2004, 39: 1477.
    13. Yoshida Y., Cisar L., and Kamado S., Effect of microstructural factors on tensile properties of an ECAE-processed AZ31 magnesium alloy, Materials Transactions, 2003, 44(4): 468.
    14. Hiroyuki Watanabe, Akira Takara, and Hidetoshi Somekawa, Effect of texture on tensile properties at elevated temperatures in an AZ31 magnesium alloy, Scripta Materialia, 2005, 52: 449.
    15. Wang L.Y., Fan Y.G., and Huang G.J., Texture of AZ31B magnesium alloy sheets, Chinese Journal of Materials Research, 2004, 18(5): 467.
    16. Chino Y., Lee J.S., and Sassa K., Press formability of a rolled AZ31 Mg alloy sheet with controlled texture, Materials Letters, 2006, 60: 173.
    17. Xinsheng H., Kazutaka S., and Niobium S., Textures and stretch formability of Mg-6Al-1Zn magnesium alloy sheets rolled at high temperatures up to 793 K, Scripta Materialia, 2009, 60(8): 651.
    18. Pan F.S., and Han E.H., High Performance Deforming Magnesium Alloy and Processing Technology, Science Press, Beijing, 2007: 176.
    19. Zhang W.Y., Liu X.L., and Chen Z.H., The microstructure and grain orientation of the asynchronous rolled AZ31 magnesium alloy sheet, Mechanical Engineering Materials, 2007, 31(12): 19.
  • 作者单位:1. National Engineering Research Center of Advanced Rolling Technology, University of Science & Technology Beijing, Beijing, 100083 China
  • ISSN:1867-7185
文摘
The effects of differential speed rolling (DSR) on the texture of AZ31B magnesium alloy sheets were investigated, which were achieved by tailoring deformation temperature, reduction, and speed ratio. The results show that the intensity of basal texture weakens with DSR. With the increase of the rolling temperature, the intensity of basal texture decreased first and then increased, which had a relation with the change of the orientation of the new grains of dynamic recrystallization during rolling. The effect of the reduction on the basal texture was made with the changing degree of sharp point of texture. With increasing the deformation at the same rolling temperature, the intensity of basal texture decreased, and the extending of contour lines decreased in the transverse direction, which was close to the circular distribution. Differential speed ratio has a greater impact on the intensity of the basal texture and has a less effect on the basal deflection.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700