GCM simulations of stable isotopes in the water cycle in comparison with GNIP observations over East Asia
详细信息    查看全文
  • 作者:Xinping Zhang (1)
    Zhian Sun (2)
    Huade Guan (1) (3)
    Xinzhu Zhang (1)
    Huawu Wu (1)
    Yimin Huang (1)
  • 关键词:GCM ; GNIP ; stable isotope ; deuterium excess ; meteoric water line
  • 刊名:Acta Meteorologica Sinica
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:26
  • 期:4
  • 页码:420-437
  • 全文大小:1811KB
  • 参考文献:1. Aragúas-Aragúas, L., K. Froehlich, and K. Rozanski, 1998: Stable isotope composition of precipitation over Southeast Asia. / J. Geophys. Res., 103, 28721-8742 CrossRef
    2. Dansgaard, W., 1964: Stable isotopes in precipitation. / Tellus, 16(4), 436-68. CrossRef
    3. Bourke, W., B. McAvaney, K. Puri, et al., 1977: Global modeling of atmospheric flow by spectral methods. / Methods in Computational Physics. Chang, J., Ed., Academic Press, 17, 267-24.
    4. Brown, J., 2003: The response of stable water isotopes in precipitation and the surface ocean to tropical climate variability. Ph.D. thesis, University of Melbourne, Melbourne, 254 pp.
    5. Craig, H., 1961: Isotopic variations with meteoric water. / Science, 133, 1702-703. CrossRef
    6. Cullen, M., and T. Davies, 1991: A conservative splitexplicit integration scheme with 4th-order horizontal advection. / Quart. J. Roy. Meteor. Soc., 117, 993-002. CrossRef
    7. Gates, W. L., J. S. Boyle, C. Covey, et al., 1999: An overview of the results of the Atmospheric Models Intercomparison Project. / Bull. Amer. Meteor. Soc., 80, 29-5. CrossRef
    8. Hoffmann, G., M. Werner, and M. Heimann, 1998: Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years. / J. Geophys. Res., 103, 16871-6896. CrossRef
    9. Joussaume, S., R. Sadourny, and J. Jouzel, 1984: A general circulation model of water isotope cycles in the atmosphere. / Nature, 311, 24-9. CrossRef
    10. Jouzel, J., 1986: Isotopes in cloud physics: Multiphase and multistage condensation processes. / Handbook of Environmental Isotope Geochemistry. Elsevier Sci. Pub. Amsterdam, 2, 61-12.
    11. - G. L. Russell, and R. J. Suozzo, 1987: Simulations of the HDO and H 2 18 O atmospheric cycles using the NASA-GISS General Circulation Model-The seasonal cycle for present day conditions. / J. Geophys. Res., 92, 14739-4760. CrossRef
    12. - R. D. Koster, R. J. Suozzo, et al., 1991: Simulations of the HDO and H 2 18 O atmospheric cycles using the NASA GISS GCM: Sensitivity experiments for present-day conditions. / J. Geophys. Res., 94, 7495-507.
    13. Lee, J. E., I. Fung, D. J. DePaolo, et al., 2007: Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model. / J. Geophys. Res., 112, doi: 10.1029/2006JD007657.
    14. Liu Zhongfang, Tian Lide, Yao Tandong, et al., 2009: Spatial distribution of / δ 18O in precipitation over China. / Chinese Sci. Bull., 54(6), 804-11.
    15. McAvaney, B. J., W. Bourke, and K. Puri, 1978: A global spectral model for simulation of the general circulation. / J. Atmos. Sci., 35, 1557-583. CrossRef
    16. Merlivat, L., and J. Jouzel, 1979: Global climatic interpretation of the deuterium-18O relationship for precipitation. / J. Geophys. Res., 84, 5029-033. CrossRef
    17. Noone, D. C., and I. Simmonds, 2002: Associations between / δ 18O of water and climate parameters in a simulation of atmospheric circulation for 1979-995. / J. Climate, 15, 3150-169. CrossRef
    18. Pfahl, S., and H. Wernli, 2008: Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean. / J. Geophys. Res., 113, doi: 10.1029/2008JD009839.
    19. - and - 2009: Lagrangian simulations of stable isotopes in water vapor: An evaluation of nonequilibrium fractionation in the Craig-Gordon model. / J. Geophys. Res., 114, doi: 10.1029/2009JD012054.
    20. Rasch, P. J., and D. L. Williamson, 1990: Computational assessment of moisture transport in global models of the atmosphere. / Quart. J. Roy. Meteor. Soc., 116, 1071-090. CrossRef
    21. Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. / J. Geophys. Res., 108, doi: 10.1029/2002JD002670.
    22. Roeckner, E., J. M. Oberhuber, A. Bacher, et al., 1996: ENSO variability and atmospheric response in a global coupled atmosphere-ocean GCM. / Climate Dyn., 12, 737-54. CrossRef
    23. Schmidt, G. A., G. Hoffmann, D. T. Shindell, et al., 2005: Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange. / J. Geophys. Res., 110, doi: 10.1029/2005JD005790.
    24. - R. Ruedy, J. E. Hansen, et al., 2006: Present day atmospheric simulations using the GISS Model E: Comparison to in-situ, satellite and reanalysis data. / J. Climate, 19, 153-92. CrossRef
    25. Su Xiaosi, Lin Xueyu, Liao Zisheng, et al., 2003: Variation of isotopes in the Yellow River along the flow path and its affecting factors. / Geochimica, 32(4), 349-57. (in Chinese)
    26. Tian Lide, Yao Tandong, Sun Weizhen, et al., 2001: Relationship between / δD and / δ 18O in precipitation on north and south of the Tibetan Plateau and moisture recycling. / Sci. China (Series D), 44(9), 789-96. CrossRef
    27. - - J. W. C. White, et al., 2005: Westerly moisture transport to the middle of Himalayas revealed from the high deuterium excess. / Chinese Sci. Bull., 50(10), 1026-030. CrossRef
    28. Tindall, J. C., P. J. Valdes, and L. C. Sime, 2009: Stable water isotopes in HadCM3: Isotopic signature of El Nio-Southern Oscillation and the tropical amount effect. / J. Geophys. Res., 114, doi: 10.1029/2008JD010825.
    29. Uemura, R., Y. Matsu, K. Yoshimura, et al., 2008: Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. / J. Geophys. Res., 113, doi: 10.1029/2008JD010209.
    30. Vaughan, J. I., 2007: An evaluation of observed and simulated high-resolution records of stable isotopes in precipitation. Ph.D. thesis, University of Melbourne, Melbourne, 268 pp.
    31. Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. / Bull. Amer. Meteor. Soc., 78, 2539-558. CrossRef
    32. Xue Jibin, Zhong Wei, and Zhao Yinjuan, 2007: Variations of / δ 18O in precipitation in the Zhujiang (Pearl) River and its relationship with ENSO event. / Scientia Geographica Sinica, 27(6), 825-30. (in Chinese)
    33. Zhang Xinping, Yao Tandong, Liu Jingmiao, et al., 2003: Simulations of stable isotopic fractionation in mixed cloud in middle latitudes—taking the precipitation at Urumqi as an example. / Adv. Atmos. Sci., 20(2), 261-68. CrossRef
    34. - Tian Lide, and Liu Jingmiao, 2005: Fractionation mechanism of stable isotope in evaporating water body. / J. Geograph. Sci., 15(3), 375-84.
    35. - Yang Zongliang, Niu Guoyue, et al., 2009: Stable water isotope simulation in different reservoirs of Manaus, Brazil, by Community Land Model incorporating stable isotopic effect. / Int. J. Climatol,, 29(5), 619-28. CrossRef
  • 作者单位:Xinping Zhang (1)
    Zhian Sun (2)
    Huade Guan (1) (3)
    Xinzhu Zhang (1)
    Huawu Wu (1)
    Yimin Huang (1)

    1. College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081, China
    2. Centre for Australian Weather and Climate Research, Melbourne, 3001, Australia
    3. School of the Environment, National Centre for Groundwater Research and Training, Flinders University, Adelaide, 5001, Australia
  • ISSN:2191-4788
文摘
In this paper, we examine the performance of four isotope incorporated GCMs, i.e., ECHAM4 (University of Hamburg), HadCM3 (Hadley Centre), GISS E (Goddard Institute of Space Sciences), and MUGCM (Melbourne University), by comparing the model results with GNIP (Global Network of Isotopes in Precipitation) observations. The spatial distributions of mean annual δD and mean annual deuterium excess d in precipitation, and the relationship between δ 18O and δD in precipitation, are compared between GCMs and GNIP data over East Asia. Overall, the four GCMs reproduce major characteristics of δD in precipitation as observed by GNIP. Among the four models, the results of ECHAM4 and GISS E are more consistent with GNIP observed precipitation δD distribution. The simulated d distributions are less consistent with the GNIP results. This may indicate that kinetic fractionation processes are not appropriately represented in the isotopic schemes of GCMs. The GCM modeled MWL (meteoric water line) slopes are close to the GNIP derived MWL, but the simulated MWL intercepts are significantly overestimated. This supports that the four isotope incorporated GCMs may not represent the kinetic fractionation processes well. In term of LMWLs (local meteoric water lines), the simulated LMWL slopes are similar to those from GNIP observations, but slightly overestimated for most locations. Overall, ECHAM4 has better capability in simulating MWL and LMWLs, followed by GISS E. Some isotopic functions (especially those related to kinetic fractionation) and their parameterizations in GCMs may have caused the discrepancy between the simulated and GNIP observed results. Future work is recommended to improve isotopic function parameterization on the basis of the high-resolution isotope observations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700