Comparative Gene Expression Signature of Pig, Human and Mouse Induced Pluripotent Stem Cell Lines Reveals Insight into Pig Pluripotency Gene Networks
详细信息    查看全文
  • 作者:Yajun Liu (1)
    Yangyang Ma (1)
    Jeong-Yeh Yang (2) (3)
    De Cheng (1) (4)
    Xiaopeng Liu (1)
    Xiaoling Ma (1)
    Franklin D. West (2) (3)
    Huayan Wang (1) (5)
  • 关键词:Pig ; iPS cell ; GeneChip ; EpCAM ; Gene expression profiling
  • 刊名:Stem Cell Reviews and Reports
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:10
  • 期:2
  • 页码:162-176
  • 全文大小:2,495 KB
  • 参考文献:1. Vassiliev, I., Vassilieva, S., Truong, K. P., Beebe, L. F., McIlfatrick, S. M., Harrison, S. J., & Nottle, M. B. (2011). Isolation and in vitro characterization of putative porcine embryonic stem cells from cloned embryos treated with trichostatin A. / Cellular Reprogramming, 13(3), 205-13. CrossRef
    2. West, F. D., Uhl, E. W., Liu, Y., Stowe, H., Lu, Y., Yu, P., Gallegos-Cardenas, A., Pratt, S. L., & Stice, S. L. (2011). Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. / Stem Cells, 10, 1640-643. CrossRef
    3. Fujishiro, S. H., Nakano, K., Mizukami, Y., Azami, T., Arai, Y., Matsunari, H., Ishino, R., Nishimura, T., Watanabe, M., Abe, T., Furukawa, Y., Umeyama, K., Yamanaka, S., Ema, M., Nagashima, H., & Hanazono, Y. (2013). Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. / Stem Cells and Development, 22(3), 473-82. CrossRef
    4. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. / Cell, 126, 663-76. CrossRef
    5. Ezashi, T., Telugu, B. P., Alexenko, A. P., Sachdev, S., Sinha, S., & Roberts, R. M. (2009). Derivation of induced pluripotent stem cells from pig somatic cells. / Proceedings of the National Academy of Sciences of the United States of America, 106, 10993-0998. CrossRef
    6. Wu, Z., Chen, J., Ren, J., Bao, L., Liao, J., Cui, C., Rao, L., Li, H., Gu, Y., Dai, H., et al. (2009). Generation of pig induced pluripotent stem cells with a drug-inducible system. / Journal of Molecular Cell Biology, 1, 46-4. CrossRef
    7. Cheng, D., Guo, Y., Li, Z., Liu, Y., Gao, X., Gao, Y., Cheng, X., Hu, J., & Wang, H. (2012). Porcine induced pluripotent stem cells require LIF and maintain their developmental potential in early stage of embryos. / PLoS One, 7, e51778. CrossRef
    8. Esteban, M. A., Xu, J., Yang, J., Peng, M., Qin, D., Li, W., Jiang, Z., Chen, J., Deng, K., Zhong, M., et al. (2009). Generation of induced pluripotent stem cell lines from Tibetan miniature pig. / Journal of Biological Chemistry, 284, 17634-7640. CrossRef
    9. West, F. D., Terlouw, S. L., Kwon, D. J., Mumaw, J. L., Dhara, S. K., Hasneen, K., Dobrinsky, J. R., & Stice, S. L. (2010). Porcine induced pluripotent stem cells produce chimeric offspring. / Stem Cells and Development, 19, 1211-220. CrossRef
    10. Fan, N., Chen, J., Shang, Z., Dou, H., Ji, G., Zou, Q., Wu, L., He, L., Wang, F., Liu, K., et al. (2013). Piglets cloned from induced pluripotent stem cells. / Cell Research, 23, 162-66. CrossRef
    11. Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V. B., Wong, E., Orlov, Y. L., Zhang, W., Jiang, J., et al. (2008). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. / Cell, 133, 1106-117. CrossRef
    12. Smith, A.G. (2001). Embryo-derived stem cells: of mice and men. Annual review of cell and developmental biology, 17, 435-62
    13. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. / Cell, 122, 947-56. CrossRef
    14. Wei, C. L., Miura, T., Robson, P., Lim, S. K., Xu, X. Q., Lee, M. Y., Gupta, S., Stanton, L., Luo, Y., Schmitt, J., et al. (2005). Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. / Stem Cells, 23, 166-85. CrossRef
    15. Richards, M., Tan, S. P., Tan, J. H., Chan, W. K., & Bongso, A. (2004). The transcriptome profile of human embryonic stem cells as defined by SAGE. / Stem Cells, 22, 51-4. CrossRef
    16. Brandenberger, R., Khrebtukova, I., Thies, R. S., Miura, T., Jingli, C., Puri, R., Vasicek, T., Lebkowski, J., & Rao, M. (2004). MPSS profiling of human embryonic stem cells. / BMC Developmental Biology, 4, 10. CrossRef
    17. Brandenberger, R., Wei, H., Zhang, S., Lei, S., Murage, J., Fisk, G. J., Li, Y., Xu, C., Fang, R., Guegler, K., et al. (2004). Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. / Nature Biotechnology, 22, 707-16. CrossRef
    18. Xue, Z., Huang, K., Cai, C., Cai, L., Jiang, C. Y., Feng, Y., Liu, Z., Zeng, Q., Cheng, L., Sun, Y. E., et al. (2013). Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. / Nature. doi:10.1038/nature12364 .
    19. Telugu, B. P., Ezashi, T., Sinha, S., Alexenko, A. P., Spate, L., Prather, R. S., & Roberts, R. M. (2011). Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos. / Journal of Biological Chemistry, 286, 28948-8953. CrossRef
    20. Chen, J., Liu, J., Yang, J., Chen, Y., Ni, S., Song, H., Zeng, L., Ding, K., & Pei, D. (2011). BMPs functionally replace Klf4 and support efficient reprogramming of mouse fibroblasts by Oct4 alone. / Cell Research, 21, 205-12. CrossRef
    21. Mikkelsen, T. S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., Bernstein, B. E., Jaenisch, R., Lander, E. S., & Meissner, A. (2008). Dissecting direct reprogramming through integrative genomic analysis. / Nature, 454, 49-5. CrossRef
    22. Liu, L., Luo, G. Z., Yang, W., Zhao, X., Zheng, Q., Lv, Z., Li, W., Wu, H. J., Wang, L., Wang, X. J., et al. (2010). Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells. / Journal of Biological Chemistry, 285, 19483-9490. CrossRef
    23. Hanna, J., Markoulaki, S., Mitalipova, M., Cheng, A. W., Cassady, J. P., Staerk, J., Carey, B. W., Lengner, C. J., Foreman, R., Love, J., et al. (2009). Metastable pluripotent states in NOD-mouse-derived ESCs. / Cell Stem Cell, 4, 513-24. CrossRef
    24. Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., Ebina, W., Mandal, P. K., Smith, Z. D., Meissner, A., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. / Cell Stem Cell, 7, 618-30. CrossRef
    25. Tsai, S., Cassady, J. P., Freking, B. A., Nonneman, D. J., Rohrer, G. A., & Piedrahita, J. A. (2006). Annotation of the Affymetrix porcine genome microarray. / Animal Genetics, 37, 423-24. CrossRef
    26. da Huang, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. / Nature Protocols, 4, 44-7. CrossRef
    27. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., et al. (2000). Gene ontology: tool for the unification of biology. The gene ontology consortium. / Nature Genetics, 25, 25-9. CrossRef
    28. Hu, J., Cheng, D., Gao, X., Bao, J., Ma, X., & Wang, H. (2012). Vitamin C enhances the in vitro development of porcine pre-implantation embryos by reducing oxidative stress. / Reproduction in Domestic Animals, 47(6), 873-79. CrossRef
    29. Chen, J., Lu, Z., Cheng, D., Peng, S., & Wang, H. (2011). Isolation and characterization of porcine amniotic fluid-derived multipotent stem cells. / PLoS One, 6, e19964. CrossRef
    30. Zhou, L., Wang, W., Liu, Y., de Castro, J. F., Ezashi, T., Telugu, B. P., Roberts, R. M., Kaplan, H. J., & Dean, D. C. (2011). Differentiation of induced pluripotent stem cells of Swine into rod photoreceptors and their integration into the retina. / Stem Cells, 29, 972-80. CrossRef
    31. Lee, M. R., Prasain, N., Chae, H. D., Kim, Y. J., Mantel, C., Yoder, M. C., & Broxmeyer, H. E. (2013). Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming. / Stem Cells, 31, 666-81. CrossRef
    32. Stoyanova, T., Goldstein, A. S., Cai, H., Drake, J. M., Huang, J., & Witte, O. N. (2012). Regulated proteolysis of Trop2 drives epithelial hyperplasia and stem cell self-renewal via β-catenin signaling. / Genes and Development, 26(20), 2271-285. CrossRef
    33. Jouneau, A., Ciaudo, C., Sismeiro, O., Brochard, V., Jouneau, L., Vandormael-Pournin, S., Coppee, J. Y., Zhou, Q., Heard, E., Antoniewski, C., et al. (2012). Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles. / RNA, 18, 253-64. CrossRef
    34. Stadler, B., Ivanovska, I., Mehta, K., Song, S., Nelson, A., Tan, Y., Mathieu, J., Darby, C., Blau, C. A., Ware, C., et al. (2010). Characterization of microRNAs involved in embryonic stem cell states. / Stem Cells and Development, 19, 935-50. CrossRef
    35. Stadtfeld, M., Apostolou, E., Akutsu, H., Fukuda, A., Follett, P., Natesan, S., Kono, T., Shioda, T., & Hochedlinger, K. (2010). Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. / Nature, 465, 175-81. CrossRef
    36. Cheng, D., Li, Z., Liu, Y., Gao, Y., & Wang, H. (2012). Kinetic analysis of porcine fibroblast reprogramming toward pluripotency by defined factors. / Cellular Reprogramming, 14, 312-23.
    37. Lu, T. Y., Lu, R. M., Liao, M. Y., Yu, J., Chung, C. H., Kao, C. F., & Wu, H. C. (2010). Epithelial cell adhesion molecule regulation is associated with the maintenance of the undifferentiated phenotype of human embryonic stem cells. / Journal of Biological Chemistry, 285, 8719-732. CrossRef
    38. Chen, H. F., Chuang, C. Y., Lee, W. C., Huang, H. P., Wu, H. C., Ho, H. N., Chen, Y. J., & Kuo, H. C. (2011). Surface marker epithelial cell adhesion molecule and E-cadherin facilitate the identification and selection of induced pluripotent stem cells. / Stem Cell Reviews, 7, 722-35. CrossRef
    39. Polo, J. M., Anderssen, E., Walsh, R. M., Schwarz, B. A., Nefzger, C. M., Lim, S. M., Borkent, M., Apostolou, E., Alaei, S., Cloutier, J., et al. (2012). A molecular roadmap of reprogramming somatic cells into iPS cells. / Cell, 151, 1617-632. CrossRef
    40. McConnell, B. B., Ghaleb, A. M., Nandan, M. O., & Yang, V. W. (2007). The diverse functions of Kruppel-like factors 4 and 5 in epithelial biology and pathobiology. / Bioessays, 29, 549-57. CrossRef
    41. Guo, G., Yang, J., Nichols, J., Hall, J. S., Eyres, I., Mansfield, W., & Smith, A. (2009). Klf4 reverts developmentally programmed restriction of ground state pluripotency. / Development, 136, 1063-069. CrossRef
    42. Han, J. Y., Yuan, P., Yang, H., Zhang, J. Q., Soh, B. S., Li, P., Lim, S. L., Cao, S. Y., Tay, J. L., Orlov, Y. L., et al. (2010). Tbx3 improves the germ-line competency of induced pluripotent stem cells. / Nature, 463, 1096-100. CrossRef
    43. Acampora, D., Di Giovannantonio, L. G., & Simeone, A. (2012). Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition. / Development, 140(1), 43-5. CrossRef
    44. Rais, Y., Zviran, A., Geula, S., Gafni, O., Chomsky, E., Viukov, S., Mansour, A. A., Caspi, I., Krupalnik, V., Zerbib, M., et al. (2013). Deterministic direct reprogramming of somatic cells to pluripotency. / Nature, 502, 65-0. CrossRef
    45. Gafni, O., Weinberger, L., Mansour, A. A., Manor, Y. S., Chomsky, E., Ben-Yosef, D., Kalma, Y., Viukov, S., Maza, I., Zviran, A., et al. (2013). Derivation of novel human ground state naive pluripotent stem cells. / Nature. doi:10.1038/nature12745 .
    46. Niwa, H., Ogawa, K., Shimosato, D., & Adachi, K. (2009). A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. / Nature, 460, 118-22. CrossRef
    47. Rodriguez, A., Allegrucci, C., & Alberio, R. (2012). Modulation of pluripotency in the porcine embryo and iPS cells. / PLoS One, 7, e49079. CrossRef
    48. Da Rocha, S. T., Edwards, C. A., Ito, M., Ogata, T., & Ferguson-Smith, A. C. (2008). Genomic imprinting at the mammalian Dlk1-Dio3 domain. / Trends in Genetics, 24, 306-16. CrossRef
    49. Chen, J., Liu, H., Liu, J., Qi, J., Wei, B., Yang, J., Liang, H., Chen, Y., Wu, Y., Guo, L., et al. (2013). H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. / Nature Genetics, 45, 34-2. CrossRef
    50. Stadtfeld, M., Apostolou, E., Ferrari, F., Choi, J., Walsh, R. M., Chen, T., Ooi, S. S., Kim, S. Y., Bestor, T. H., Shioda, T., et al. (2012). Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. / Nature Genetics, 44, 398-05. CrossRef
    51. Edwards, C. A., Mungall, A. J., Matthews, L., Ryder, E., Gray, D. J., Pask, A. J., Shaw, G., Graves, J. A., Rogers, J., Consortium, S., et al. (2008). The evolution of the DLK1-DIO3 imprinted domain in mammals. / PLoS Biology, 6, e135. CrossRef
    52. Esmailpour, T., & Huang, T. (2012). TBX3 promotes human embryonic stem cell proliferation and neuroepithelial differentiation in a differentiation stage-dependent manner. / Stem Cells, 30, 2152-163. CrossRef
    53. Wang, J., Gu, Q., Hao, J., Jia, Y., Xue, B., Jin, H., Ma, J., Wei, R., Hai, T., Kong, Q., et al. (2013). Tbx3 and Nr5alpha2 play important roles in pig pluripotent stem cells. / Stem Cell Reviews, 9(5), 700-08. CrossRef
    54. Hanna, J., Cheng, A. W., Saha, K., Kim, J., Lengner, C. J., Soldner, F., Cassady, J. P., Muffat, J., Carey, B. W., & Jaenisch, R. (2010). Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. / Proceedings of the National Academy of Sciences of the United States of America, 107, 9222-227. CrossRef
  • 作者单位:Yajun Liu (1)
    Yangyang Ma (1)
    Jeong-Yeh Yang (2) (3)
    De Cheng (1) (4)
    Xiaopeng Liu (1)
    Xiaoling Ma (1)
    Franklin D. West (2) (3)
    Huayan Wang (1) (5)

    1. College of Veterinary Medicine, Shaanxi Center for Stem Cell Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
    2. Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
    3. Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, 425 River Road, Athens, GA, 30602-2771, USA
    4. Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA, 17033, USA
    5. Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
  • ISSN:1558-6804
文摘
Reported pig induced pluripotent stem cells (piPSCs) have shown either a bFGF-dependent state with human embryonic stem cell (ESC) and mouse epiblast stem cell (EpiSC) morphology and molecular features or piPSCs exist in a LIF-dependent state and resemble fully reprogrammed mouse iPSCs. The features of authentic piPSCs and molecular events during the reprogramming are largely unknown. In this study, we assessed the transcriptome profile of multiple piPSC lines derived from different laboratories worldwide and compared to mouse and human iPSCs to determine the molecular signaling pathways that might play a central role in authentic piPSCs. The results demonstrated that the up-regulation of endogenous epithelial cells adhesion molecule (EpCAM) was correlated with the pluripotent state of pig pluripotent cells, which could be utilized as a marker for evaluating pig cell reprogramming. Comparison of key signaling pathways JAK-STAT, NOTCH, TGFB1, WNT and VEGF in pig, mouse and human iPSCs showed that the core transcriptional network to maintain pluripotency and self-renewal in pig were different from that in mouse, but had significant similarities to human. Pig iPSCs, which lacked expression of specific na?ve state markers KLF2/4/5 and TBX3, but expressed the primed state markers of Otx2 and Fabp7, share defining features with human ESCs and mouse EpiSCs. The cluster of imprinted genes delineated by the delta-like homolog 1 gene and the type III iodothyronine deiodinase gene (DLK1-DIO3) were silenced in piPSCs as previously seen in mouse iPSCs that have limited ability to contribute to chimaeras. These key differences in na?ve state gene and imprinting gene expression suggests that so far known piPSC lines may be more similar to primed state cells. The primed state of these cells may potentially explain the rare ability of piPSCS to generate chimeras and cloned offspring.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700