Air Plasma-Sprayed Yttria and Yttria-Stabilized Zirconia Thermal Barrier Coatings Subjected to Calcium-Magnesium-Alumino-Silicate (CMAS)
详细信息    查看全文
  • 作者:Wenshuai Li (1) (2) (3)
    Huayu Zhao (1) (2)
    Xinghua Zhong (1) (2)
    Liang Wang (1) (2)
    Shunyan Tao (1) (2)
  • 关键词:CMAS ; plasma spraying ; thermal barrier coatings ; yttria ; yttria ; stabilized zirconia
  • 刊名:Journal of Thermal Spray Technology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:23
  • 期:6
  • 页码:975-983
  • 全文大小:1,615 KB
  • 参考文献:1. N.P. Padture, M. Gell, and E.H. Jordan, Materials Science—Thermal Barrier Coatings for Gas-Turbine Engine Applications, / Science, 2002, 296(5566), p 280-284 CrossRef
    2. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, / J. Therm. Spray Technol., 1997, 6(1), p 35-42 CrossRef
    3. U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne, J.M. Dorvaux, M. Poulain, R. Mevrel, and M.L. Caliez, Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings, / Aero. Sci. Technol., 2003, 7(1), p 73-80 CrossRef
    4. R.A. Miller, Current Status of Thermal Barrier Coatings—an Overview, / Surf. Coat. Technol., 1987, 30(1), p 1-11 CrossRef
    5. B. Gleeson, Thermal Barrier Coatings for Aeroengine Applications, / J. Propuls. Power, 2006, 22(2), p 375-383 CrossRef
    6. M.J. Stiger, N.M. Yanar, M.G. Topping, F.S. Pettit, and G.H. Meier, Thermal Barrier Coatings for the 21st Century, / Z. Metallkd., 1999, 90(12), p 1069-1078
    7. P.K. Wright and A.G. Evans, Mechanisms Governing the Performance of Thermal Barrier Coatings, / Curr. Opin. Solid State Mater. Sci., 1999, 4(3), p 255-265 CrossRef
    8. R.W. Bruce, Development of 1232 Degrees C (2250 Degrees F) Erosion and Impact Tests for Thermal Barrier Coatings, / Tribol. Trans., 1998, 41(4), p 399-410 CrossRef
    9. M.P. Borom, C.A. Johnson, and L.A. Peluso, Role of Environment Deposits and Operating Surface Temperature in Spallation of Air Plasma Sprayed Thermal Barrier Coatings, / Surf. Coat. Technol., 1996, 86-87, p 116-126 CrossRef
    10. P. Mohan, T. Patterson, B. Yao, and Y. Sohn, Degradation of Thermal Barrier Coatings by Fuel Impurities and CMAS: Thermochemical Interactions and Mitigation Approaches, / J. Therm. Spray Technol., 2010, 19(1-2), p 156-167 CrossRef
    11. D.J. Dewet, R. Taylor, and F.H. Stott, Corrosion Mechanisms of ZrO2-Y2O3 Thermal Barrier Coatings in the Presence of Molten Middle-East Sand, / J. Phys. IV, 1993, 3(C9), p 655-663
    12. F.H. Stott, D.J. Dewet, and R. Taylor, Degradation of Thermal-Barrier Coatings at Very High-Temperatures, / MRS Bull., 1994, 19(10), p 46-49
    13. X. Chen, M.Y. He, I. Spitsberg, N.A. Fleck, J.W. Hutchinson, and A.G. Evans, Mechanisms Governing the High Temperature Erosion of Thermal Barrier Coatings, / Wear, 2004, 256(7-8), p 735-746 CrossRef
    14. C. Mercer, S. Faulhaber, A.G. Evans, and R. Darolia, A Delamination Mechanism for Thermal Barrier Coatings Subject to Calcium-Magnesium-Alumino-Silicate (CMAS) Infiltration, / Acta Mater., 2005, 53(4), p 1029-1039 CrossRef
    15. R. Wellman, G. Whitman, and J.R. Nicholls, Cmas Corrosion of EB-PVD TBCs: Identifying the Minimum Level to Initiate Damage, / Int. J. Refract. Met. Hard Mater., 2010, 28(1), p 124-132 CrossRef
    16. S. Kr?mer, J. Yang, C.G. Levi, and C.A. Johnson, Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO-MgO-Al2O3-SiO2(CMAS) Deposits, / J. Am. Ceram. Soc., 2006, 89(10), p 3167-3175 CrossRef
    17. L. Li, N. Hitchman, and J. Knapp, Failure of Thermal Barrier Coatings Subjected to CMAS Attack, / J. Therm. Spray Technol., 2009, 19(1-2), p 148-155 CrossRef
    18. W. Jing, G. Hong-bo, G. Yu-zhi, and G. Sheng-kai, Microstructure and Thermo-Physical Properties of Yttria Stabilized Zirconia Coatings with CMAS Deposits, / J. Eur. Ceram. Soc., 2011, 31(10), p 1881-1888 CrossRef
    19. A. Aygun, A.L. Vasiliev, N.P. Padture, and X. Ma, Novel Thermal Barrier Coatings That are Resistant to High-Temperature Attack by Glassy Deposits, / Acta Mater., 2007, 55(20), p 6734-6745 CrossRef
    20. S. Kr?mer, J. Yang, and C.G. Levi, Infiltration-Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts, / J. Am. Ceram. Soc., 2008, 91(2), p 576-583 CrossRef
    21. J.M. Drexler, K. Shinoda, A.L. Ortiz, D. Li, A.L. Vasiliev, A.D. Gledhill, S. Sampath, and N.P. Padture, Air-Plasma-Sprayed Thermal Barrier Coatings That are Resistant to High-Temperature Attack by Glassy Deposits, / Acta Mater., 2010, 58(20), p 6835-6844 CrossRef
    22. J.M. Drexler, C.-H. Chen, A.D. Gledhill, K. Shinoda, S. Sampath, and N.P. Padture, Plasma Sprayed Gadolinium Zirconate Thermal Barrier Coatings That Are Resistant to Damage by Molten Ca-Mg-Al-Silicate Glass, / Surf. Coat. Technol., 2012, 206(19-20), p 3911-3916 CrossRef
    23. J.M. Drexler, A.L. Ortiz, and N.P. Padture, Composition Effects of Thermal Barrier Coating Ceramics on their Interaction with Molten Ca-Mg-Al-Silicate (CMAS) Glass, / Acta Mater., 2012, 60(15), p 5437-5447 CrossRef
    24. N. Iwamoto, N. Umesaki, and S. Endo, Characterization of Plasma-Sprayed Zirconia Coatings by X-Ray-Diffraction and Raman-Spectroscopy, / Thin Solid Films, 1985, 127(1-2), p 129-137 CrossRef
  • 作者单位:Wenshuai Li (1) (2) (3)
    Huayu Zhao (1) (2)
    Xinghua Zhong (1) (2)
    Liang Wang (1) (2)
    Shunyan Tao (1) (2)

    1. The Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai, 201899, China
    2. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
    3. University of Chinese Academy of Sciences, Beijing, 100039, China
  • ISSN:1544-1016
文摘
Yttria (Y2O3) and zirconia (ZrO2) stabilized by 8 and 20?wt.%Y2O3 thermal barrier coatings (TBCs) subjected to calcium-magnesium-alumino-silicate (CMAS) have been investigated. Free-standing Y2O3, 8 and 20?wt.%YSZ coatings covered with synthetic CMAS slurry were heated at 1300?°C in air for 24?h in order to assess the effect of Y2O3 on the corrosion resistance of the coatings subjected to CMAS. The microstructures and phase compositions of the coatings were characterized by SEM, EDS, XRD, RS, and TEM. TBCs with higher Y2O3 content exhibited better CMAS corrosion resistance. Phase transformation of ZrO2 from tetragonal (t) to monoclinic (m) occurred during the interaction of 8YSZ TBCs and CMAS, due to the depletion of Y2O3 in the coating. Some amounts of original c-ZrO2 still survived in 20YSZ TBCs along with a small amount of m-ZrO2 that appeared after reaction with CMAS. Furthermore, Y2O3 coating was found to be particularly highly effective in resisting the penetration of molten CMAS glass at high temperature (1300?°C). This may be ascribed to the formation of sealing layers composed of Y-apatite phase [based on Ca4Y6 (SiO4)6O and Y4.67(SiO4)3O] by the high-temperature chemical interactions of Y2O3 coating and CMAS glass.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700