A phylogenetic analysis of the ubiquitin superfamily based on sequence and structural information
详细信息    查看全文
  • 作者:Zhen Yang (1) (2)
    Haikui Chen (3)
    Xiaobo Yang (1)
    Xueshuai Wan (1)
    Lian He (1)
    Ruoyu Miao (1)
    Huayu Yang (1)
    Yang Zhong (4)
    Li Wang (5)
    Haitao Zhao (1)
  • 关键词:Ubiquitin ; Phylogeny ; Motif ; Gene family
  • 刊名:Molecular Biology Reports
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:41
  • 期:9
  • 页码:6083-6088
  • 全文大小:1,327 KB
  • 参考文献:1. Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6(1):79鈥?7 CrossRef
    2. Herrmann J, Lerman LO, Lerman A (2007) Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res 100(9):1276鈥?291 CrossRef
    3. Gao T, Liu Z, Wang Y, Cheng H, Yang Q, Guo A et al (2013) UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation. Nucleic Acids Res 41((Database issue)):D445鈥?51 CrossRef
    4. Yu H (2012) Typical cell signaling response to ionizing radiation: DNA damage and extranuclear damage. Chin J Cancer Res 24(2):83鈥?9 CrossRef
    5. Finley D (2001) Signal transduction. An alternative to destruction. Nature 412(6844)(283):5鈥?
    6. Hicke L (1997) Ubiquitin-dependent internalization and down-regulation of plasma membrane proteins. Faseb J 11(14):1215鈥?226
    7. Buchberger A (2002) From UBA to UBX: new words in the ubiquitin vocabulary. Trends Cell Biol 12(5):216鈥?21 CrossRef
    8. Su V, Lau AF (2009) Ubiquitin-like and ubiquitin-associated domain proteins: significance in proteasomal degradation. Cell Mol Life Sci 66(17):2819鈥?833 CrossRef
    9. Matic I, Hay RT (2012) Detection and quantitation of SUMO chains by mass spectrometry. Methods Mol Biol 832:239鈥?47 CrossRef
    10. Furukawa K, Mizushima N, Noda T, Ohsumi Y (2000) A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. J Biol Chem 275(11):7462鈥?465 CrossRef
    11. Xu J, Zhang J, Wang L, Zhou J, Huang H, Wu J et al (2006) Solution structure of Urm1 and its implications for the origin of protein modifiers. Proc Natl Acad Sci USA 103(31):11625鈥?1630 CrossRef
    12. Leidel S, Pedrioli PG, Bucher T, Brost R, Costanzo M, Schmidt A et al (2009) Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 458(7235):228鈥?32 CrossRef
    13. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235鈥?42 CrossRef
    14. Holm L, Sander C (1993) Protein structure comparison by alignment of distance matrices. J Mol Biol 233(1):123鈥?38 CrossRef
    15. Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1):2256鈥?268 CrossRef
    16. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536鈥?40
    17. Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinform. doi:10.1002/0471250953.bi0203s00
    18. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688鈥?690 CrossRef
    19. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34(Web server issue):W369鈥?73 CrossRef
    20. Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N et al (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455(7217):1193鈥?197 CrossRef
    21. Dastur A, Beaudenon S, Kelley M, Krug RM, Huibregtse JM (2006) Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J Biol Chem 281(7):4334鈥?338 CrossRef
    22. Zhao C, Beaudenon SL, Kelley ML, Waddell MB, Yuan W, Schulman BA et al (2004) The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein. Proc Natl Acad Sci USA 101(20):7578鈥?582 CrossRef
    23. Zou W, Zhang DE (2006) The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase. J Biol Chem 281(7):3989鈥?994 CrossRef
    24. Schauber C, Chen L, Tongaonkar P, Vega I, Lambertson D, Potts W et al (1998) Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391(6668):715鈥?18 CrossRef
    25. Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135(6 Pt 1):1457鈥?470 CrossRef
    26. Huang WP, Klionsky DJ (2002) Autophagy in yeast: a review of the molecular machinery. Cell Struct Funct 27(6):409鈥?20 CrossRef
    27. Knight D, Harris R, McAlister MS, Phelan JP, Geddes S, Moss SJ et al (2002) The X-ray crystal structure and putative ligand-derived peptide binding properties of gamma-aminobutyric acid receptor type A receptor-associated protein. J Biol Chem 277(7):5556鈥?561 CrossRef
    28. Kouno T, Mizuguchi M, Tanida I, Ueno T, Kanematsu T, Mori Y et al (2005) Solution structure of microtubule-associated protein light chain 3 and identification of its functional subdomains. J Biol Chem 280(26):24610鈥?4617 CrossRef
    29. Kigawa T, Endo M, Ito Y, Shirouzu M, Kikuchi A, Yokoyama S (1998) Solution structure of the Ras-binding domain of RGL. FEBS Lett 441(3):413鈥?18 CrossRef
    30. Nassar N, Horn G, Herrmann C, Scherer A, McCormick F, Wittinghofer A (1995) The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375(6532):554鈥?60 CrossRef
    31. Malakhov MP, Kim KI, Malakhova OA, Jacobs BS, Borden EC, Zhang DE (2003) High-throughput immunoblotting. Ubiquitiin-like protein ISG15 modifies key regulators of signal transduction. J Biol Chem 278(19):16608鈥?6613 CrossRef
    32. Prieto PA, Cha CH (2012) DKK1 as a serum biomarker for hepatocellular carcinoma. Hepatobiliary Surg Nutr 1:17. doi:10.3978/j.issn.2304-3881.2012.10.12
    33. Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP (2004) Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118(1):83鈥?7 CrossRef
    34. Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88(1):97鈥?07 CrossRef
    35. Wing SS (2003) Deubiquitinating enzymes鈥攖he importance of driving in reverse along the ubiquitin鈥損roteasome pathway. Int J Biochem Cell Biol 35(5):590鈥?05 CrossRef
    36. Xue Zhao, Zhen Yang, GuangBing Li et al (2012) The role and clinical implications of microRNAs in hepatocellular carcinoma. Sci China Life Sci 55(10):906鈥?19 CrossRef
  • 作者单位:Zhen Yang (1) (2)
    Haikui Chen (3)
    Xiaobo Yang (1)
    Xueshuai Wan (1)
    Lian He (1)
    Ruoyu Miao (1)
    Huayu Yang (1)
    Yang Zhong (4)
    Li Wang (5)
    Haitao Zhao (1)

    1. Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, CAMS & PUMC, Beijing, 100730, China
    2. Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
    3. Department of Life Science, Beifang University of Nationalities, Yinchuan, 730000, China
    4. Institute of Biodiversity Science and Geobiology, Tibet University, Lhasa, 850000, China
    5. Shanghai Center for Bioinformation Technology, Shanghai, 200235, China
  • ISSN:1573-4978
文摘
Ubiquitin belongs to an important class of protein modifier and gene expression regulator proteins that participates in various cellular processes. A large number of ubiquitin-related proteins have been identified during the last two decades. However, the evolutionary history of this ancient gene family remains largely unknown. We analyzed the members of the superfamily using both sequence- and structure-based methodology to better understand the evolution of ubiquitin-related proteins. As a part of these analyses we used the MEME algorithm to extract common sequence motifs across the superfamily, and we inferred the phylogeny and distribution of the superfamily members across multiple species. A total of 23 families were identified in the gene family. Several common sequence motifs were revealed and evaluated. We also found that the number of genes for ubiquitin-related proteins encoded within a specific genome correlates with the biological complexity of that particular species. This analysis should provide valuable insight into the sequence/function relationships and evolutionary history of ubiquitin and ubiquitin-related proteins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700