Polaron and bipolaron stability on paraphenylene polymers
详细信息    查看全文
文摘
Polyparaphenylene is the prototypical conjugated polymer containing phenyl rings and its properties are good references for a family of derived polymers. We investigate the structure, stability, and dynamics of polarons and bipolarons in polyparaphenylene chains under an applied electric field. To do this, we use a bidimensional SSH Hamiltonian model with the Hubbard extension, i.e., with local and nearest-neighbor Coulomb interaction, which has been designed to work with general hexagonal lattices, from which polyparaphenylene can be seen as a prominent case. Using the time-dependent Hartree–Fock approximation, we calculate the structural characteristics, the maximum field strength, supported before polarons and bipolarons gets unstable, and the maximum velocity achieved by these charge carriers. We obtained the polaron and bipolaron terminal velocity to be 0.51 Å/fs and 1.15 Å/fs, respectively. The maximum field strength determined by our calculations is 0.54 mV/Å and 0.80 mV/Å, respectively. Our results are in good agreement with other theoretical methods and experiments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700