A spatially explicit data-driven approach to assess the effect of agricultural land occupation on species groups
详细信息    查看全文
  • 作者:Pieter M. F. Elshout (1)
    Rosalie van Zelm (1)
    Ramkumar Karuppiah (2)
    Ian J. Laurenzi (2)
    Mark A. J. Huijbregts (1)
  • 关键词:Biodiversity ; Characterization factor ; Crop cultivation ; Life cycle impact assessment ; Land occupation ; Species richness
  • 刊名:The International Journal of Life Cycle Assessment
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:19
  • 期:4
  • 页码:758-769
  • 全文大小:880 KB
  • 参考文献:1. Alkemade R, Van Oorschot M, Miles L, Nellemann C, Bakkenes M, Ten Brink B (2009) GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystem 12(3):374鈥?90 CrossRef
    2. Andow DA (1991) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561鈥?86 CrossRef
    3. Bare J (2011) Recommendation for land use impact assessment: first steps into framework, theory, and implementation. Clean Techn Environ Policy 13(1):7鈥?8 CrossRef
    4. Basedow T (1998) The species composition and frequency of spiders (Araneae) in fields of winter wheat grown under different conditions in Germany. J Appl Entomol 122:585鈥?90 CrossRef
    5. Bellamy PE, Croxton PJ, Heard MS, Hinsley SA, Hulmes L, Hulmes S, Nuttall P, Pywell RF, Rothery P (2009) The impact of growing miscanthus for biomass on farmland bird populations. Biomass Bioenergy 33(2):191鈥?99 CrossRef
    6. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18(4):182鈥?88 CrossRef
    7. Booij CJH, Noorlander J (1992) Farming systems and insect predators. Agric Ecosyst Environ 40:125鈥?35 CrossRef
    8. Boutin C, Martin PA, Baril A (2009) Arthropod diversity as affected by agricultural management (organic and conventional farming), plant species, and landscape context. Ecoscience 16(4):492鈥?01 CrossRef
    9. Brentrup F, K眉sters J, Lammel J, Kuhlmann H (2002) Life cycle impact assessment of land use based on the hemeroby concept. Int J Life Cycle Assess 7(6):339鈥?48
    10. Cody ML (1981) Habitat selection in birds: the roles of vegetation structure, competitors, and productivity. Bioscience 31(2):107鈥?13 CrossRef
    11. Cook WM, Faeth SH (2006) Irrigation and land use drive ground arthropod community patterns in an urban desert. Environ Entomol 35(6):1532鈥?540 CrossRef
    12. Curran M, De Baan L, De Schryver AM, Van Zelm R, Hellweg S, K枚llner T, Sonnemann G, Huijbregts MAJ (2011) Toward meaningful end points of biodiversity in life cycle assessment. Environ Sci Technol 45(1):70鈥?9 CrossRef
    13. Danielsen F, Beukema H, Burgess ND, Parish F, Br眉hl CA, Donald PF, Murdiyarso D, Phalan B, Reijnders L, Struebig M, Fitzherbert EB (2008) Biofuel plantation on forested lands: double jeopardy for biodiversity and climate. Conserv Biol 23(2):348鈥?58 CrossRef
    14. De Baan L, Mutel CL, Curran M, Hellweg S, K枚llner T (2013a) Land use in life cycle assessment: global characterization factors based on regional and global potential species extinction. Environ Sci Technol 47(16):9281鈥?290 CrossRef
    15. De Baan L, Alkemade R, K枚llner T (2013b) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess 18(6):1216鈥?230 CrossRef
    16. De Schryver AM, Goedkoop MJ, Leuven RSEW, Huijbregts MAJ (2010) Uncertainties in the application of the species area relationship for characterisation factors of land occupation in life cycle assessment. Int J Life Cycle Assess 15(7):682鈥?91 CrossRef
    17. De Snoo GR (1997) Arable flora in sprayed and unsprayed crop edges. Agric Ecosyst Environ 66(3):223鈥?30 CrossRef
    18. De Souza DM, Flynn DFB, DeClerck F, Rosenbaum RK, De Melo Lisboa H, K枚llner T (2013) Land use impacts on biodiversity in LCA: proposal of characterization factors based on functional diversity. Int J Life Cycle Assess 18(6):1231鈥?242 CrossRef
    19. Estrada A, Coates-Estrada R (2005) Diversity of Neotropical migratory landbird species assemblages in forest fragments and man-made vegetation in Los Tuxtlas, Mexico. Biodivers Conserv 14(7):1719鈥?734 CrossRef
    20. Flohre A, Fischer C, Aavik T, Bengtsson J, Berendse F, Bommarco R, Ceryngier P, Clement LW, Dennis C, Eggers S, Emmerson M, Geiger F, Guerrero I, Hawro V, Inchausti P, Liira J, Morales MB, O帽ate JJ, P盲rt T, Weisser WW, Winqvist C, Thies C, Tscharntke T (2011) Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol Appl 21(5):1772鈥?781 CrossRef
    21. Foley JA, DeFriest R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570鈥?74 CrossRef
    22. Gaines HR, Gratton C (2010) Seed predation increases with ground beetle diversity in a Wisconsin (USA) potato agroecosystem. Agric Ecosyst Environ 137:329鈥?36 CrossRef
    23. Gardiner MA, Tuell JK, Isaacs R, Gibbs J, Ascher JS, Landis DA (2010) Implications of three biofuel crops for beneficial arthropods in agricultural landscapes. BioEnergy 3(1):6鈥?9 CrossRef
    24. Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA, Peres CA, Sodhi NS (2009) Prospects for tropical biodiversity in a human-modified world. Ecol Lett 12(6):561鈥?82 CrossRef
    25. Geyer R, Lindner JP, Stoms DM, Davis FW, Wittstock B (2010) Coupling GIS and LCA for biodiversity assessments of land use. Part 2: impact assessment. Int J Life Cycle Assess 15(7):692鈥?03 CrossRef
    26. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4(4):379鈥?91 CrossRef
    27. Hanafiah MM, Hendriks AJ, Huijbregts MAJ (2012) Comparing the ecological footprint with the biodiversity footprint of products. J Clean Prod 37:107鈥?14 CrossRef
    28. Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice PV, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122(1):113鈥?30 CrossRef
    29. Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103(1):1鈥?5 CrossRef
    30. Kessler M, Abrahamczyk S, Bos M, Buchori D, Dwi Putra D, Gradstein SR, H玫hn P, Kluge J, Orend F, Pitopang R, Saleh S, Schulze CH, Sporn SG, Steffan-Dewenter I, Tjitrosoedirdjo SS, Tscharntke T (2009) Alpha and beta diversity of plants and animals along a tropical land-use gradient. Ecol Appl 19(8):2142鈥?156 CrossRef
    31. Khoury F, Al-Shamlih M (2006) The impact of intensive agriculture on the bird community of a sand dune desert. J Arid Environ 64(3):448鈥?59 CrossRef
    32. Kl酶verpris J, Wenzel H, Nielsen PH (2007) Life cycle inventory modelling of land use induced by crop consumption. Part 1: conceptual analysis and methodological proposal. Int J Life Cycle Assess 13(1):13鈥?1
    33. K枚llner T (2000) Species-pool effect potentials (SPEP) as a yardstick to evaluate land-use impacts on biodiversity. J Clean Prod 8(4):293鈥?11 CrossRef
    34. K枚llner T, Scholz RW (2007) Assessment of land use impacts on the natural environment. Part 1: an analytical framework for pure land occupation and land use change. Int J Life Cycle Assess 12(1):16鈥?3
    35. K枚llner T, Scholz RW (2008) Assessment of land use impacts on the natural environment. Part 2: generic characterization factors for local species diversity in central Europe. Int J Life Cycle Assess 13(1):32鈥?8
    36. Kromp B (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric Ecosyst Environ 74:187鈥?28 CrossRef
    37. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583鈥?21 CrossRef
    38. Lang A, Filser J, Henschel JR (1999) Predation by ground beetles and wolf spiders on herbivorous insects in a maize crop. Agric Ecosyst Environ 72(2):189鈥?99 CrossRef
    39. Larsen FW, Bladt J, Balmford A, Rahbek C (2012) Birds as biodiversity surrogates: will supplementing birds with other taxa improve effectiveness? J Appl Ecol 49(2):349鈥?56 CrossRef
    40. Lindeijer E (2000a) Review of land use impact methodologies. J Clean Prod 8(4):273鈥?81 CrossRef
    41. Lindeijer E (2000b) Biodiversity and life support impacts of land use in LCA. J Clean Prod 8(4):313鈥?19 CrossRef
    42. Lindeijer E, M眉ller-Wenk R, Steen B (2002) Impact assessment of resources and land use. In: Udo de Haes HA, Finnveden G, Goedkoop M et al. (eds) Life cycle impact assessment: striving towards best practice. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, pp 11鈥?4
    43. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50鈥?0 CrossRef
    44. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504鈥?09 CrossRef
    45. McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev 73(2):181鈥?01 CrossRef
    46. McLaughlin A, Mineau P (1995) The impact of agricultural practices on biodiversity. Agric Ecosyst Environ 55(3):201鈥?12 CrossRef
    47. Meek B, Loxton D, Sparks T, Pywell R, Pickett H, Nowakowski M (2002) The effect of arable field margin composition on invertebrate biodiversity. Biol Conserv 106(2):259鈥?71 CrossRef
    48. Michelsen O (2008) Assessment of land use impact on biodiversity. Proposal of a new methodology exemplified with forestry operations in Norway. Int J Life Cycle Assess 13(1):22鈥?1
    49. Mil脿 i Canals L, Bauer C, Depestele J, Dubreuil A, Freiermuth Knuchel R, Gaillard G, Michelsen O, M眉ller-Wenk R, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12(1):5鈥?5 CrossRef
    50. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC
    51. M眉ller C, De Baan L, K枚llner T (2013) Comparing direct land use impacts on biodiversity of conventional and organic milk鈥攂ased on a Swedish case study. Int J Life Cycle Assess. doi:10.1007/s11367-013-0638-5
    52. M眉ller-Wenk R, Brand茫o M (2010) Climatic impact of land use in LCA鈥攃arbon transfers between vegetation/soil and air. Int J Life Cycle Assess 15(2):172鈥?82 CrossRef
    53. Mulugeta D, Stoltenberg DE, Boerboom CM (2001) Weed species鈥揳rea relationships as influenced by tillage. Weed Sci 49(2):217鈥?23 CrossRef
    54. Nepstad DC, Ver铆ssimo A, Alencar A, Nobre C, Lima E, Lefebvre P, Schlesinger P, Potter C, Moutinho P, Mendoza E, Cochrane M, Brooks V (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505鈥?08 CrossRef
    55. Olsen DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D鈥檃mico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51(11):933鈥?38 CrossRef
    56. Ottonetti L, Tucci L, Frizzi F, Chelazzi G, Santini G (2010) Changes in ground-foraging ant assemblages along a disturbance gradient in a tropical agricultural landscape. Ethol Ecol Evol 22(1):73鈥?6 CrossRef
    57. Ouchtati N, Doumandji S, Brandmayr P (2012) Comparison of ground beetle (Coleoptera: Carabidae) assemblages in cultivated and natural steppe biotopes of the semi-arid region of Algeria. Afr Entomol 20(1):134鈥?43 CrossRef
    58. Prendergast JR (2006) Species richness covariance in higher taxa: empirical tests of the biodiversity indicator concept. Ecography 20(2):210鈥?16 CrossRef
    59. Riechert SE, Bishop L (1990) Prey control by an assemblage of generalist predators: spiders in garden test systems. Ecology 71(4):1441鈥?450 CrossRef
    60. Rodrigues ASL, Brooks TM (2007) Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu Rev Ecol Evol Syst 38:713鈥?37 CrossRef
    61. Schmidt JH (2008) Development of LCIA characterisation factors for land use impacts on biodiversity. J Clean Prod 16(18):1929鈥?942 CrossRef
    62. Schmidt MH, Roschewitz I, Thies C, Tscharntke T (2005) Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J Appl Ecol 42(2):281鈥?87 CrossRef
    63. Schulze CH, Waltert M, Kessler PJA, Pitopang R, Shahabudding, Veddeler D, M眉hlenberg M, Gradstein SR, Leuschner C, Steffan-Dewenter I, Tscharntke T (2004) Biodiversity indicator groups of tropical land-use systems: comparing plants, birds, and insects. Ecol Appl 14(5):1321鈥?333 CrossRef
    64. Sodhi NS, Koh LP, Brook BW, Ng PKL (2004) Southeast Asian biodiversity: an impending disaster. Trends Ecol Evol 19(12):654鈥?60 CrossRef
    65. S酶rensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. K Dan Vidensk Selsk Biol Skr 5:1鈥?4
    66. Ulber L, Steinmann H-H, Klimek S, Isselstein J (2009) An on-farm approach to investigate the impact of diversified crop rotations on weed species richness and composition in winter wheat. Weed Res 49(5):534鈥?43 CrossRef
    67. Vandewalle M, de Bello F, Berg MP, Bolger T, Dol茅dec S, Dubs F, Feld CK, Harrington R, Harrison PA, Lavorel S, Martins da Silva P, Moretti M, Niemel盲 J, Santos P, Sattler T, Sousa JP, Sykes MT, Vanbergen AJ, Woodcock BA (2010) Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers Conserv 19(10):2921鈥?947 CrossRef
    68. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth鈥檚 ecosystems. Science 277:494鈥?99 CrossRef
    69. Vogtl盲nder JG, Lindeijer E, Witte JPM, Hendriks C (2004) Characterizing the change of land-use based on flora: application for EIA and LCA. J Clean Prod 12(1):47鈥?7 CrossRef
    70. Ward KE, Ward RN (2001) Diversity and abundance of carabid beetles in short-rotation plantings of sweetgum, maize and switchgrass in Alabama. Agrofor Syst 53(3):261鈥?67 CrossRef
    71. Weidema BP, Lindeijer E (2001) Physical impacts of land use in product life cycle assessment. Final report of the EURENVIRON-LCAGAPS sub-project on land use. Technical University of Denmark, Lyngby
    72. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80鈥?3 CrossRef
    73. Wilson JD, Whittingham MJ, Bradbury RB (2005) The management of crop structure: a general approach to reversing the impacts of agricultural intensification on birds? Ibis 147(3):453鈥?63 CrossRef
    74. Wright SJ, Muller-Landau HC (2006) The future of tropical forest species. Biotropica 38(3):287鈥?01 CrossRef
  • 作者单位:Pieter M. F. Elshout (1)
    Rosalie van Zelm (1)
    Ramkumar Karuppiah (2)
    Ian J. Laurenzi (2)
    Mark A. J. Huijbregts (1)

    1. Institute for Water and Wetland Research, Department of Environmental Science, Radboud University Nijmegen, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
    2. ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, NJ, 08801-3059, USA
  • ISSN:1614-7502
文摘
Purpose Change of vegetation cover and increased land use intensity, particularly for agricultural use, can affect species richness. Within life cycle impact assessment, methods to assess impacts of land use on a global scale are still in need of development. In this work, we present a spatially explicit data-driven approach to characterize the effect of agricultural land occupation on different species groups. Methods We derived characterization factors for the direct impact of agricultural land occupation on relative species richness. Our method identifies potential differences in impacts for cultivation of different crop types, on different species groups, and in different world regions. Using empirical species richness data gathered via an extensive literature search, characterization factors were calculated for four crop groups (oil palm, low crops, Pooideae, and Panicoideae), four species groups (arthropods, birds, mammals, and vascular plants), and six biomes. Results and discussion Analysis of the collected data showed that vascular plant richness is more sensitive than the species richness of arthropods to agricultural land occupation. Regarding the differences between world regions, the impact of agricultural land use was lower in boreal forests/taiga than in temperate and tropical regions. The impact of oil palm plantations was found to be larger than that of Pooideae croplands, although we cannot rule out that this difference is influenced by the spatial difference between the oil palm- and Pooideae-growing regions as well. Analysis of a subset of data showed that the impact of conventional farming was larger than the impact of low-input farming. Conclusions The impact of land occupation on relative species richness depends on the taxonomic groups considered, the climatic region, and farm management. The influence of crop type, however, was found to be of less importance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700