A methodology for separating uncertainty and variability in the life cycle greenhouse gas emissions of coal-fueled power generation in the USA
详细信息    查看全文
  • 作者:Zoran J. N. Steinmann (1)
    Mara Hauck (1)
    Ramkumar Karuppiah (2)
    Ian J. Laurenzi (2)
    Mark A. J. Huijbregts (1)
  • 关键词:Carbon footprint ; Coal ; Electricity generation ; Life cycle assessment ; Monte Carlo simulation ; Uncertainty ; Variability
  • 刊名:The International Journal of Life Cycle Assessment
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:19
  • 期:5
  • 页码:1146-1155
  • 全文大小:
  • 参考文献:1. Burnham A, Han J, Clark CE, Wang M, Dunn JB, Palou-Rivera I (2011) Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum. Environ Sci Technol 46(2):619-27 CrossRef
    2. Ciroth A, Fleischer G, Steinbach J (2004) Uncertainty calculation in life cycle assessments. Int J Life Cycle Assess 9(4):216-26 CrossRef
    3. Dones R, Bauer C, Roeder A (2007) Kohle. Final report. Sachbilanzen von Energiesystemen: Grundlagen fuer den oekologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Oekobilanzen fuer die Schweiz. Paul Scherrer Institute Villingen, Swiss Centre for Life Cycle Inventories, Duebendorf, Switzerland
    4. EIA (2010) Coal production and number of mines by state, county, and mine type. http://www.eia.gov/cneaf/coal/page/acr/table 2.html. Accessed 9 August 2011
    5. EIA (2011a) Annual energy outlook 2011. U.S. Energy Information Administration, Washington
    6. EIA (2011b) Form EIA-923 detailed data. U.S. Department of Energy. http://www.eia.gov/electricity/data/eia923/. Accessed 30 April 2011
    7. EIA (2011c) Form EIA-860 2009 http://www.eia.gov/electricity/data/eia860/index.html. Accessed 30 April 2011
    8. EPA (1989) Exposure factors handbook. Washington DC
    9. EPA (2010) eGRID2010 version 1.1 year 2007 GHG annual output emission rates http://www.epa.gov/cleanenergy/documents/egridzips/eGRID2010V1_1_year07_GHGOutputrates.pdf. Accessed 30 Oct 2011
    10. EPA (2011a) Inventory of U.S. greenhouse gas emissions and sinks: 1990-009. U.S. Environmental Protection Agency, Washington
    11. EPA (2011b) Inventory of U.S. greenhouse gas emissions and sinks: 1990-009. Annex 3 Methodological descriptions for additional source or sink categories. U.S. Environmental Protection Agency, Washington
    12. Heijungs R, Huijbregts MAJ (2004) A review of approaches to treat uncertainty in LCA. In: 2nd biennial meeting of the International Environmental Modelling and Software Society (IEMSS), Manno, Switzerland, 2004
    13. Hong BD, Slatick ER (1994) Carbon dioxide emission factors for coal quarterly coal report. EIA, Washington, DC
    14. Huijbregts M (1998a) Application of uncertainty and variability in LCA. Int J Life Cycle Assess 3(5):273-80 CrossRef
    15. Huijbregts M (1998b) Part II: Dealing with parameter uncertainty and uncertainty due to choices in life cycle assessment. Int J Life Cycle Assess 3(6):343-51 CrossRef
    16. Huijbregts MAJ, Gilijamse W, Ragas AMJ, Reijnders L (2003) Evaluating uncertainty in environmental life-cycle assessment. A case study comparing two insulation options for a Dutch one-family dwelling. Environ Sci Technol 37(11):2600-608 CrossRef
    17. IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. IPCC, Cambridge, New York
    18. Jaramillo P, Griffin WM, Matthews HS (2007) Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation. Environ Sci Technol 41(17):6290-296 CrossRef
    19. Littlefield J, Bhander R, Bennett B, Davis T, Draucker L, Eckard R, Ellis W, Kauffman J, Malone A, Munson R, Nippert M, Ramezan M, Bromiley R (2010) Life cycle analysis: existing pulverized coal (EXPC) power plant. National Energy Technology Laboratory
    20. Lloyd SM, Ries R (2007) Characterizing, propagating, and analyzing uncertainty in life-cycle assessment—a survey of quantitative approaches. J Ind Ecol 11(1):161-79 CrossRef
    21. McCollum DL (2007) Future impacts of coal distribution constrains on coal cost. University of California, Davis
    22. MIT (2011) The future of natural gas. MIT
    23. Paté-Cornell ME (1996) Uncertainties in risk analysis: six levels of treatment. Reliab Eng Syst Saf 54(2-):95-11 CrossRef
    24. Spielmann M, Bauer C, Dones R (2007) Transport services: Ecoinvent report no. 14. Swiss Center for Life Cycle Inventories, Dübendorf, Switzerland
    25. US Census Bureau (2010) 2010 census gazetteer files. http://www.census.gov/geo/www/gazetteer/gazetteer2010.html. Accessed 1 May 2012
    26. US Census Bureau (2011)?American fact finder. http://factfinder.census.gov/home/saff/main.html?_lang=en. Accessed 28 July 2011
    27. Venkatesh A, Jaramillo P, Griffin WM, Matthews HS (2011) Uncertainty in life cycle greenhouse gas emissions from United States natural gas end-uses and its effects on policy. Environ Sci Technol 45(19):8182-189 CrossRef
    28. Venkatesh A, Jaramillo P, Griffin WM, Matthews HS (2012a) Implications of near-term coal power plant retirement for SO2 and NOX and life cycle GHG emissions. Environ Sci Technol 46(18):9838-845
    29. Venkatesh A, Jaramillo P, Griffin WM, Matthews HS (2012b) Uncertainty in life cycle greenhouse gas emissions from United States coal. Energy Fuels 26(8):4917-923 CrossRef
    30. Weber CL, Jaramillo P, Marriott J, Samaras C (2010) Life cycle assessment and grid electricity: what do we know and what can we know? Environ Sci Technol 44(6):1895-901 CrossRef
    31. Williams ED, Weber CL, Hawkins TR (2009) Hybrid framework for managing uncertainty in life cycle inventories. J Ind Ecol 13(6):928-44 CrossRef
  • 作者单位:Zoran J. N. Steinmann (1)
    Mara Hauck (1)
    Ramkumar Karuppiah (2)
    Ian J. Laurenzi (2)
    Mark A. J. Huijbregts (1)

    1. Department of Environmental Science, Radboud University Nijmegen, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
    2. ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, NJ, 08801-3059, USA
  • ISSN:1614-7502
文摘
Purpose Results of life cycle assessments (LCAs) of power generation technologies are increasingly reported in terms of typical values and possible ranges. Extents of these ranges result from both variability and uncertainty. Uncertainty may be reduced via additional research. However, variability is a characteristic of supply chains as they exist; as such, it cannot be reduced without modifying existing systems. The goal of this study is to separately quantify uncertainty and variability in LCA. Methods In this paper, we present a novel method for differentiating uncertainty from variability in life cycle assessments of coal-fueled power generation, with a specific focus on greenhouse gas emissions. Individual coal supply chains were analyzed for 364 US coal power plants. Uncertainty in CO2 and CH4 emissions throughout these supply chains was quantified via Monte Carlo simulation. The method may be used to identify key factors that drive the range of life cycle emissions as well as the limits of precision of an LCA. Results and discussion Using this method, we statistically characterized the carbon footprint of coal power in the USA in 2009. Our method reveals that the average carbon footprint of coal power?(100 year time horizon) ranges from 0.97 to 1.69?kg CO2eq/kWh of generated electricity (95?% confidence interval), primarily due to variability in plant efficiency. Uncertainty in the carbon footprints of individual plants spans a factor of 1.04 for the least uncertain plant footprint to a factor of 1.2 for the most uncertain plant footprint (95?% uncertainty intervals). The uncertainty in the total carbon footprint of all US coal power plants spans a factor of 1.05. Conclusions We have developed and successfully implemented a framework for separating uncertainty and variability in the carbon footprint of coal-fired power plants. Reduction of uncertainty will not substantially reduce the range of predicted emissions. The range can only be reduced via substantial changes to the US coal power infrastructure. The finding that variability is larger than uncertainty can obviously not be generalized to other product systems and impact categories. Our framework can, however, be used to assess the relative influence of uncertainty and variability for a whole range of product systems and environmental impacts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700