IMRT Beam Angle Optimization Using Non-descent Pattern Search Methods
详细信息    查看全文
  • 作者:Humberto Rocha (23)
    Joana M. Dias (23) (24)
    Brígida Ferreira (25) (26)
    Maria do Carmo Lopes (25) (26)
  • 关键词:Pattern Search Methods ; IMRT ; Beam Angle Optimization
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2014
  • 出版时间:2014
  • 年:2014
  • 卷:8580
  • 期:1
  • 页码:17-31
  • 全文大小:686 KB
  • 参考文献:1. Alberto, P., Nogueira, F., Rocha, H., Vicente, L.N.: Pattern search methods for user-provided points: Application to molecular geometry problems. SIAM J. Optim.?14, 1216-236 (2004) CrossRef
    2. Aleman, D.M., Kumar, A., Ahuja, R.K., Romeijn, H.E., Dempsey, J.F.: Neighborhood search approaches to beam orientation optimization in intensity modulated radiation therapy treatment planning. J. Global Optim.?42, 587-07 (2008) CrossRef
    3. Bortfeld, T., Schlegel, W.: Optimization of beam orientations in radiation therapy: some theoretical considerations. Phys. Med. Biol.?38, 291-04 (1993) CrossRef
    4. Craft, D.: Local beam angle optimization with linear programming and gradient search. Phys. Med. Biol.?52, 127-35 (2007) CrossRef
    5. Das, S.K., Marks, L.B.: Selection of coplanar or non coplanar beams using three-dimensional optimization based on maximum beam separation and minimized nontarget irradiation. Int. J. Radiat. Oncol. Biol. Phys.?38, 643-55 (1997) CrossRef
    6. Custódio, A.L., Rocha, H., Vicente, L.N.: Incorporating minimum Frobenius norm models in direct search. Comput. Optim. Appl.?46, 265-78 (2010) CrossRef
    7. Custódio, A.L., Vicente, L.N.: Using sampling and simplex derivatives in pattern search methods. SIAM J. Optim.?18, 537-55 (2007) CrossRef
    8. Davis, C.: Theory of positive linear dependence. Am. J. Math.?76, 733-46 (1954) CrossRef
    9. Deasy, J.O., Blanco, A.I., Clark, V.H.: CERR: A Computational Environment for Radiotherapy Research. Med. Phys.?30, 979-85 (2003) CrossRef
    10. Dias, J., Rocha, H., Ferreira, B.C., Lopes, M.C.: A genetic algorithm with neural network fitness function evaluation for IMRT beam angle optimization. Cent. Eur. J. Oper. Res. (in press) doi:10.1007/s10100-013-0289-4
    11. Lee, E.K., Fox, T., Crocker, I.: Integer programming applied to intensity-modulated radiation therapy treatment planning. Ann. Oper. Res.?119, 165-81 (2003) CrossRef
    12. Li, Y., Yao, D., Yao, J., Chen, W.: A particle swarm optimization algorithm for beam angle selection in intensity modulated radiotherapy planning. Phys. Med. Biol.?50, 3491-514 (2005) CrossRef
    13. Liu, H.H., Jauregui, M., Zhang, X., Wang, X., Dongand, L., Mohan, R.: Beam angle optimization and reduction for intensity-modulated radiation therapy of non-small-cell lung cancers. Int. J. Radiat. Oncol. Biol. Phys.?65, 561-72 (2006) CrossRef
    14. Pugachev, A., Xing, L.: Computer-assisted selection of coplanar beam orientations in intensity-modulated radiation therapy. Phys. Med. Biol.?46, 2467-476 (2001) CrossRef
    15. Pugachev, A., Xing, L.: Incorporating prior knowledge into beam orientation optimization in IMRT. Int. J. Radiat. Oncol. Biol. Phys.?54, 1565-574 (2002) CrossRef
    16. Rocha, H., Dias, J.M., Ferreira, B.C., Lopes, M.C.: Incorporating Radial Basis Functions in Pattern Search Methods: Application to Beam Angle Optimization in Radiotherapy Treatment Planning. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part III. LNCS, vol.?7335, pp. 1-6. Springer, Heidelberg (2012) CrossRef
    17. Rocha, H., Dias, J.M., Ferreira, B.C., Lopes, M.C.: Beam angle optimization for intensity-modulated radiation therapy using a guided pattern search method. Phys. Med. Biol.?58, 2939-953 (2013) CrossRef
    18. Rocha, H., Dias, J.M., Ferreira, B.C., Lopes, M.C.: Selection of intensity modulated radiation therapy treatment beam directions using radial basis functions within a pattern search methods framework. J. Glob. Optim.?57, 1065-089 (2013) CrossRef
    19. Rocha, H., Dias, J.M., Ferreira, B.C., Lopes, M.C.: Pattern search methods framework for beam angle optimization in radiotherapy design. Appl. Math. Comput.?219, 10853-0865 (2013) CrossRef
    20. Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A., Li, J.: A novel linear programming approach to fluence map optimization for intensity modulated radiation therapy treatment planing. Phys. Med. Biol.?48, 3521-542 (2003) CrossRef
    21. Stein, J., Mohan, R., Wang, X.H., Bortfeld, T., Wu, Q., Preiser, K., Ling, C.C., Schlegel, W.: Number and orientation of beams in intensity-modulated radiation treatments. Med. Phys.?24, 149-60 (1997) CrossRef
  • 作者单位:Humberto Rocha (23)
    Joana M. Dias (23) (24)
    Brígida Ferreira (25) (26)
    Maria do Carmo Lopes (25) (26)

    23. INESC-Coimbra, Rua Antero de Quental, 199, 3000-033, Coimbra, Portugal
    24. Faculdade de Economia, Universidade de Coimbra, 3004-512, Coimbra, Portugal
    25. I3N, Departamento de Física, Universidade de Aveiro, 3810-193, Aveiro, Portugal
    26. Servi?o de Física Médica, IPOC-FG, EPE, 3000-075, Coimbra, Portugal
  • ISSN:1611-3349
文摘
The intensity-modulated radiation therapy (IMRT) treatment planning is usually a sequential process where initially a given number of beam directions are selected followed by the fluence map optimization (FMO) considering those beam directions. The beam angle optimization (BAO) problem consists on the selection of appropriate radiation incidence directions in radiation therapy treatment planning and may be decisive for the quality of the treatment plan, both for appropriate tumor coverage and for enhancement of better organs sparing. This selection must be based on the optimal value of the FMO problem otherwise the resulting beam angle set has no guarantee of optimality and has questionable reliability. Pattern search methods (PSM) have been used successfully to address the BAO problem driven by the optimal fluence value of the FMO problem. PSM are iterative methods generating a sequence of non-increasing iterates such that iterate progression is solely based on a finite number of function evaluations in each iteration, without explicit or implicit use of derivatives. Typically, in IMRT optimization, the quality of the solutions obtained is not simply related to the final value of an objective function but rather judged by dose-volume histograms or considering a set of physical dose metrics. These dose metrics can be simply described as obtaining a minimum prescribed dose for the target volumes (the regions that have to be irradiated) and a maximum or mean tolerance dose values for the remaining surrounding structures (the regions that should be spared). The goal of this paper is to present a non-descent PSM that can be guided both by an objective function formulation of the FMO problem and by physical dose metrics. Four retrospective treated cases of head-and-neck tumors at the Portuguese Institute of Oncology of Coimbra are used to discuss the benefits of non-descent PSM for the optimization of the BAO problem.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700