Probing the bradycardic drug binding receptor of HCN-encoded pacemaker channels
详细信息    查看全文
  • 作者:Yau-Chi Chan (1)
    Kai Wang (1)
    Ka Wing Au (1)
    Chu-Pak Lau (1)
    Hung-Fat Tse (1) (2)
    Ronald A. Li (1) (2) (3) (4)
  • 关键词:Drug ; Inner pore ; ZD7288 ; Pacemaker channels ; HCN
  • 刊名:Pfl眉gers Archiv - European Journal of Physiology
  • 出版年:2009
  • 出版时间:November 2009
  • 年:2009
  • 卷:459
  • 期:1
  • 页码:25-38
  • 全文大小:1790KB
  • 参考文献:1. Au KW, Siu CW, Lau CP, Tse HF, Li RA (2008) Structural and functional determinants in the S5-P region of HCN-encoded pacemaker channels revealed by cysteine-scanning substitutions. Am J Physiol 294:C136-44 CrossRef
    2. Azene EM, Sang D, Tsang SY, Li RA (2005) Pore-to-gate coupling of HCN channels revealed by a pore variant that contributes to gating but not permeation. Biochem Biophys Res Commun 327:1131-142 CrossRef
    3. Azene EM, Xue T, Li RA (2003) Molecular basis of the effect of potassium on heterologously expressed pacemaker (HCN) channels. J Physiol 547:349-56 CrossRef
    4. Azene EM, Xue T, Marban E, Tomaselli GF, Li RA (2005) Non-equilibrium behavior of HCN channels: insights into the role of HCN channels in native and engineered pacemakers. Cardiovasc Res 67:263-73 CrossRef
    5. Baruscotti M, Bucchi A, Difrancesco D (2005) Physiology and pharmacology of the cardiac pacemaker (“funny- current. Pharmacol Ther 107:59-9 CrossRef
    6. Bucchi A, Baruscotti M, DiFrancesco D (2002) Current-dependent block of rabbit sino-atrial node I(f) channels by ivabradine. J Gen Physiol 120:1-3 CrossRef
    7. Bucchi A, Tognati A, Milanesi R, Baruscotti M, DiFrancesco D (2006) Properties of ivabradine-induced block of HCN1 and HCN4 pacemaker channels. J Physiol 572:335-46 CrossRef
    8. Cerbai E, Barbieri M, Mugelli A (1994) Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes isolated from hypertensive rats. J Physiol 481(Pt 3):585-91
    9. Cerbai E, Sartiani L, DePaoli P, Pino R, Maccherini M, Bizzarri F, DiCiolla F, Davoli G, Sani G, Mugelli A (2001) The properties of the pacemaker current I(F)in human ventricular myocytes are modulated by cardiac disease. J Mol Cell Cardiol 33:441-48 CrossRef
    10. Chan YC, Siu CW, Lau YM, Lau CP, Li RA, Tse HF (2009) Synergistic effects of inward rectifier (IK1) and pacemaker (If) currents on the induction of bioengineered cardiac automaticity. J Cardiovasc Electrophysiol 20:1048-054 CrossRef
    11. Chen S, Wang J, Siegelbaum SA (2001) Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J Gen Physiol 117:491-04 CrossRef
    12. Cheng L, Kinard K, Rajamani R, Sanguinetti MC (2007) Molecular mapping of the binding site for a blocker of hyperpolarization-activated, cyclic nucleotide-modulated pacemaker channels. J Pharmacol Exp Ther 322:931-39 CrossRef
    13. Choi KL, Mossman C, Aube J, Yellen G (1993) The internal quaternary ammonium receptor site of Shaker potassium channels. Neuron 10:533-41 CrossRef
    14. Fernandez-Velasco M, Goren N, Benito G, Blanco-Rivero J, Bosca L, Delgado C (2003) Regional distribution of hyperpolarization-activated current (If) and hyperpolarization-activated cyclic nucleotide-gated channel mRNA expression in ventricular cells from control and hypertrophied rat hearts. J Physiol 553:395-05 CrossRef
    15. Gauss R, Seifert R, Kaupp UB (1998) Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 393:583-87 CrossRef
    16. Henrikson CA, Xue T, Dong P, Sang D, Marban E, Li RA (2003) Identification of a surface charged residue in the S3–S4 linker of the pacemaker (HCN) channel that influences activation gating. J Biol Chem 278:13647-3654 CrossRef
    17. Hidalgo P, MacKinnon R (1995) Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science 268:307-10 CrossRef
    18. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland
    19. Lesso H, Li RA (2003) Helical secondary structure of the external S3–S4 linker of pacemaker (HCN) channels revealed by site-dependent perturbations of activation phenotype. J Biol Chem 278:22290-2297 CrossRef
    20. Li RA, Ennis IL, French RJ, Dudley SC Jr, Tomaselli GF, Marban E (2001) Clockwise domain arrangement of the sodium channel revealed by (mu)-conotoxin (GIIIA) docking orientation. J Biol Chem 276:11072-1077 CrossRef
    21. Li RA, Moore J, Tarasova Y, Boheler K (2005) Human embryonic stem cell-derived cardiomyocytes: therapeutic potentials and limitations. J Stem Cells 1:109-24
    22. Lieu DK, Chan YC, Lau CP, Tse HF, Siu CW, Li RA (2008) Overexpression of HCN-encoded pacemaker current silences bioartificial pacemakers. Heart Rhythm 5:1310-317 CrossRef
    23. Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M (1998) A family of hyperpolarization-activated mammalian cation channels. Nature 393:587-91 CrossRef
    24. Milanesi R, Baruscotti M, Gnecchi-Ruscone T, DiFrancesco D (2006) Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. N Engl J Med 354:151-57 CrossRef
    25. Moosmang S, Stieber J, Zong X, Biel M, Hofmann F, Ludwig A (2001) Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. Eur J Biochem 268:1646-652 CrossRef
    26. Santoro B, Chen S, Luthi A, Pavlidis P, Shumyatsky GP, Tibbs GR, Siegelbaum SA (2000) Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J Neurosci 20:5264-275
    27. Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, Tibbs GR (1998) Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 93:717-29 CrossRef
    28. Santoro B, Tibbs GR (1999) The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann N Y Acad Sci 868:741-64 CrossRef
    29. Schulze-Bahr E, Neu A, Friederich P, Kaupp UB, Breithardt G, Pongs O, Isbrandt D (2003) Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest 111:1537-545
    30. Shin KS, Rothberg BS, Yellen G (2001) Blocker state dependence and trapping in hyperpolarization-activated cation channels: evidence for an intracellular activation gate. J Gen Physiol 117:91-01 CrossRef
    31. Siu CW, Lieu DK, Li RA (2006) HCN-encoded pacemaker channels: from physiology and biophysics to bioengineering. J Membr Biol 214:115-22 CrossRef
    32. Siu CW, Moore JC, Li RA (2007) Human embryonic stem cell-derived cardiomyocytes for heart therapies. Cardiovasc Hematol Disord Drug Targets 7:145-52
    33. Tsang SY, Lesso H, Li RA (2004) Critical intra-linker interactions of HCN1-encoded pacemaker channels revealed by interchange of S3–S4 determinants. Biochem Biophys Res Commun 322:652-58 CrossRef
    34. Tsang SY, Lesso H, Li RA (2004) Dissecting the structural and functional roles of the S3–S4 linker of pacemaker (hyperpolarization-activated cyclic nucleotide-modulated) channels by systematic length alterations. J Biol Chem 279:43752-3759 CrossRef
    35. Tse HF, Xue T, Lau CP, Siu CW, Wang K, Zhang QY, Tomaselli GF, Akar FG, Li RA (2006) Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation 114:1000-011 CrossRef
    36. Ulens C, Tytgat J (2001) Functional heteromerization of HCN1 and HCN2 pacemaker channels. J Biol Chem 276:6069-072 CrossRef
    37. Xue T, Li RA (2002) An external determinant in the S5-P linker of the pacemaker (HCN) channel identified by sulfhydryl modification. J Biol Chem 277:46233-6242 CrossRef
    38. Xue T, Marban E, Li RA (2002) Dominant-negative suppression of HCN1- and HCN2-encoded pacemaker currents by an engineered HCN1 construct: insights into structure-function relationships and multimerization. Circ Res 90:1267-273 CrossRef
    39. Xue T, Siu CW, Lieu DK, Lau CP, Tse HF, Li RA (2007) Mechanistic role of I(f) revealed by induction of ventricular automaticity by somatic gene transfer of gating-engineered pacemaker (HCN) channels. Circulation 115:1839-850 CrossRef
    40. Kirsch GE, Trepakova ES, Brimecombe JC, Sidach SS, Erickson HD, Kochan MC, Shyjka LM, Lacerda AE, Brown AM (2004) Variability in the measurement of hERG potassium channel inhibition: effects of temperature and stimulus pattern. J Pharmacol Toxicol Methods 50(2):93-01 CrossRef
    41. Kasama M, Furukawa Y, Oguchi T, Hoyano Y, Chiba S (1998) Effects of low temperature on the chronotropic and inotropic responses to zatebradine, E-4031 and verapamil in isolated perfused dog atria. Jpn J Pharmacol 78(4):493-99 CrossRef
  • 作者单位:Yau-Chi Chan (1)
    Kai Wang (1)
    Ka Wing Au (1)
    Chu-Pak Lau (1)
    Hung-Fat Tse (1) (2)
    Ronald A. Li (1) (2) (3) (4)

    1. Division of Cardiology, Department of Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
    2. Stem Cell and Regenerative Medicine Program, Research Center of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
    3. Human Embryonic Stem Cell Consortium, School of Medicine, University of California, Davis, CA, USA
    4. Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children of North California, University of California, Room 650, Shriners Hospital, 2425 Stockton Blvd., Sacramento, CA, 95817, USA
  • ISSN:1432-2013
文摘
If (or Ih), encoded by the hyperpolarization-activated, cyclic nucleotide-gated (HCN1-) channel gene family, contributes significantly to cardiac pacing. Bradycardic agents such as ZD7288 that target HCN channels have been developed, but the molecular configuration of their receptor is poorly defined. Here, we probed the drug receptor by systematically introducing alanine scanning substitutions into the selectivity filter (C347A, I348A, G349A, Y350A, G351A in the P-loop), outer (P355A, V356A, S357A, M358A in the P-S6 linker), and inner (M377A, F378A, V379A in S6) pore vestibules of HCN1 channels. When heterologously expressed in human embryonic kidney 293 cells for patch-clamp recordings, I348A, G349A, Y350A, G351A, P355A, and V356A did not produce measurable currents. The half-blocking concentration (IC50) of wild type (WT) for ZD7288 was 25.8?±-.7?μM. While the IC50 of M358A was identical to WT, those of C347A, S357A, F378A, and V379A markedly increased to 137.6?±-6.4, 113.3?±-4.1, 587.1?±-67.5, and 1726.3?±-73.4?μM, respectively (p-lt;-.05). Despite the proximity of the S6 residues studied, M377A was hypersensitive (IC50--.1?±-.7?μM; p-lt;-.05) implicating site specificity. To explore the energetic interactions among the S6 residues, double and triple substitutions (M377A/F378A, M377A/V379A, F378A/V379A, and M377A/F378A/V379A) were generated for thermodynamic cycle analysis. Specific interactions with coupling energies (ΔΔG) >1?kT for M377–F378 and F378–V379 but not M377–V379 were identified. Based on these new data and others, we proposed a refined drug-blocking model that may lead to improved antiarrhythmics and bioartificial pacemaker designs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700