Modeling of Friedreich ataxia-related iron overloading cardiomyopathy using patient-specific-induced pluripotent stem cells
详细信息    查看全文
  • 作者:Yee-Ki Lee (1)
    Philip Wing-Lok Ho (2)
    Revital Schick (3) (4) (5)
    Yee-Man Lau (1)
    Wing-Hon Lai (1)
    Ting Zhou (6)
    Yanhua Li (6)
    Kwong-Man Ng (1)
    Shu-Leung HO (2)
    Miguel Angel Esteban (6)
    Ofer Binah (3) (4) (5)
    Hung-Fat Tse (1)
    Chung-Wah Siu (1) (7)
  • 关键词:Friedreich ataxia ; Induced pluripotent stem cells ; Cardiomyopathy
  • 刊名:Pfl篓鹿gers Archiv - European Journal of Physiology
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:466
  • 期:9
  • 页码:1831-1844
  • 全文大小:2,402 KB
  • 参考文献:1. Bayot A, Santos R, Camadro JM, Rustin P (2011) Friedreich's ataxia: the vicious circle hypothesis revisited. BMC Med 9:112. doi:10.1186/1741-7015-9-112 CrossRef
    2. Bradley JL, Blake JC, Chamberlain S, Thomas PK, Cooper JM, Schapira AH (2000) Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia. Hum Mol Genet 9:275-2 CrossRef
    3. Bradley JL, Blake JC, Chamberlain S, Thomas PK, Cooper JM, Schapira AH (2000) Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia. Human molecular genetics 9:275-2 CrossRef
    4. Bunse M, Bit-Avragim N, Riefflin A, Perrot A, Schmidt O, Kreuz FR, Dietz R, Jung WI, Osterziel KJ (2003) Cardiac energetics correlates to myocardial hypertrophy in Friedreich's ataxia. Ann Neurol 53:121-. doi:10.1002/ana.10419 CrossRef
    5. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M (1996) Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423- CrossRef
    6. Chantrel-Groussard K, Geromel V, Puccio H, Koenig M, Munnich A, Rotig A, Rustin P (2001) Disabled early recruitment of antioxidant defenses in Friedreich's ataxia. Hum Mol Genet 10:2061- CrossRef
    7. Fujikawa M, Yoshida M (2010) A sensitive, simple assay of mitochondrial ATP synthesis of cultured mammalian cells suitable for high-throughput analysis. Biochem Biophys Res Commun 401:538-3. doi:10.1016/j.bbrc.2010.09.089 CrossRef
    8. Geoffroy G, Barbeau A, Breton G, Lemieux B, Aube M, Leger C, Bouchard JP (1976) Clinical description and roentgenologic evaluation of patients with Friedreich's ataxia. Can J Neurol Sci 3:279-6
    9. Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM (2006) Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat Chem Biol 2:551-. doi:10.1038/nchembio815
    10. Hick A, Wattenhofer-Donze M, Chintawar S, Tropel P, Simard JP, Vaucamps N, Gall D, Lambot L, Andre C, Reutenauer L, Rai M, Teletin M, Messaddeq N, Schiffmann SN, Viville S, Pearson CE, Pandolfo M, Puccio HM (2013) Induced pluripotent stem cell derived neurons and cardiomyocytes as a model for mitochondrial defects in Friedreich's ataxia. Dis Model Mech 6(3):608-12. doi:10.1242/dmm.010900 CrossRef
    11. Horowitz MP, Greenamyre JT (2010) Mitochondrial iron metabolism and its role in neurodegeneration. J Alzheimers Dis 20(Suppl 2):S551-8
    12. Huang ML, Becker EM, Whitnall M, Suryo Rahmanto Y, Ponka P, Richardson DR (2009) Elucidation of the mechanism of mitochondrial iron loading in Friedreich's ataxia by analysis of a mouse mutant. Proc Natl Acad Sci U S A 106:16381-. doi:10.1073/pnas.0906784106 CrossRef
    13. Kipps A, Alexander M, Colan SD, Gauvreau K, Smoot L, Crawford L, Darras BT, Blume ED (2009) The longitudinal course of cardiomyopathy in Friedreich's ataxia during childhood. Pediatr Cardiol 30:306-0. doi:10.1007/s00246-008-9305-1 CrossRef
    14. Ku S, Soragni E, Campau E, Thomas EA, Altun G, Laurent LC, Loring JF, Napierala M, Gottesfeld JM (2010) Friedreich's ataxia induced pluripotent stem cells model intergenerational GAATTC triplet repeat instability. Cell Stem Cell 7:631-. doi:10.1016/j.stem.2010.09.014 CrossRef
    15. Lai WH, Ho JC, Lee YK, Ng KM, Au KW, Chan YC, Lau CP, Tse HF, Siu CW (2010) ROCK inhibition facilitates the generation of human-induced pluripotent stem cells in a defined, feeder-, and serum-free system. Cell Reprogram 12:641-3. doi:10.1089/cell.2010.0051 CrossRef
    16. Lamarche JB, Cote M, Lemieux B (1980) The cardiomyopathy of Friedreich's ataxia morphological observations in 3 cases. Can J Neurol Sci 7:389-6
    17. Lee YK, Ng KM, Lai WH, Chan YC, Lau YM, Lian Q, Tse HF, Siu CW (2011) Calcium homeostasis in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Rev 7:976-6. doi:10.1007/s12015-011-9273-3 CrossRef
    18. Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Lam FF, Kang S, Xia JC, Lai WH, Au KW, Chow YY, Siu CW, Lee CN, Tse HF (2010) Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121:1113-3. doi:10.1161/CIRCULATIONAHA.109.898312 CrossRef
    19. Liu J, Verma PJ, Evans-Galea MV, Delatycki MB, Michalska A, Leung J, Crombie D, Sarsero JP, Williamson R, Dottori M, Pebay A (2011) Generation of induced pluripotent stem cell lines from Friedreich ataxia patients. Stem Cell Rev 7:703-3. doi:10.1007/s12015-010-9210-x CrossRef
    20. Martelli A, Wattenhofer-Donze M, Schmucker S, Bouvet S, Reutenauer L, Puccio H (2007) Frataxin is essential for extramitochondrial Fe-S cluster proteins in mammalian tissues. Human molecular genetics 16:2651-. doi:10.1093/hmg/ddm163 CrossRef
    21. Michael S, Petrocine SV, Qian J, Lamarche JB, Knutson MD, Garrick MD, Koeppen AH (2006) Iron and iron-responsive proteins in the cardiomyopathy of Friedreich's ataxia. Cerebellum 5:257-7. doi:10.1080/14734220600913246 CrossRef
    22. Payne RM (2011) The heart in Friedreich's ataxia: basic findings and clinical implications. Prog Pediatr Cardiol 31:103-09. doi:10.1016/j.ppedcard.2011.02.007 CrossRef
    23. Payne RM, Wagner GR (2012) Cardiomyopathy in Friedreich ataxia: clinical findings and research. J Child Neurol 27:1179-6. doi:10.1177/0883073812448535 CrossRef
    24. Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe–S enzyme deficiency followed by intramitochondrial iron deposits. Nature genetics 27:181-. doi:10.1038/84818 CrossRef
    25. Ramirez RL, Qian J, Santambrogio P, Levi S, Koeppen AH (2012) Relation of cytosolic iron excess to cardiomyopathy of Friedreich's ataxia. Am J Cardiol 110:1820-. doi:10.1016/j.amjcard.2012.08.018 CrossRef
    26. Rindler PM, Clark RM, Pollard LM, De Biase I, Bidichandani SI (2006) Replication in mammalian cells recapitulates the locus-specific differences in somatic instability of genomic GAA triplet-repeats. Nucleic Acids Res 34:6352-1. doi:10.1093/nar/gkl846 CrossRef
    27. Rotig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P (1997) Aconitase and mitochondrial iron–sulphur protein deficiency in Friedreich ataxia. Nature genetics 17:215-. doi:10.1038/ng1097-215 CrossRef
    28. Schulz JB, Boesch S, Burk K, Durr A, Giunti P, Mariotti C, Pousset F, Schols L, Vankan P, Pandolfo M (2009) Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat Rev Neurol 5:222-4 CrossRef
    29. Sturm B, Bistrich U, Schranzhofer M, Sarsero JP, Rauen U, Scheiber-Mojdehkar B, de Groot H, Ioannou P, Petrat F (2005) Friedreich's ataxia, no changes in mitochondrial labile iron in human lymphoblasts and fibroblasts: a decrease in antioxidative capacity? J Biol Chem 280:6701-. doi:10.1074/jbc.M408717200 CrossRef
    30. Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, Navarrete EG, Hu S, Wang L, Lee A, Pavlovic A, Lin S, Chen R, Hajjar RJ, Snyder MP, Dolmetsch RE, Butte MJ, Ashley EA, Longaker MT, Robbins RC, Wu JC (2012) Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med 4:130ra47 DOI 4/130/130ra47 [pii] 10.1126/scitranslmed.3003552
    31. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861-2. doi:10.1016/j.cell.2007.11.019 CrossRef
    32. Wallander ML, Leibold EA, Eisenstein RS (2006) Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochim Biophys Acta 1763:668-9. doi:10.1016/j.bbamcr.2006.05.004 CrossRef
    33. Whitnall M, Suryo Rahmanto Y, Sutak R, Xu X, Becker EM, Mikhael MR, Ponka P, Richardson DR (2008) The MCK mouse heart model of Friedreich's ataxia: alterations in iron-regulated proteins and cardiac hypertrophy are limited by iron chelation. Proc Natl Acad Sci U S A 105:9757-2. doi:10.1073/pnas.0804261105 CrossRef
    34. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917-0. doi:10.1126/science.1151526 CrossRef
    35. Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C, Mutalif RA, Navasankari R, Zhang Y, Tse HF, Stewart CL, Colman A (2011) A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8:31-5. doi:10.1016/j.stem.2010.12.002 CrossRef
    36. Zuhlke CH, Dalski A, Habeck M, Straube K, Hedrich K, Hoeltzenbein M, Konstanzer A, Hellenbroich Y, Schwinger E (2004) Extension of the mutation spectrum in Friedreich's ataxia: detection of an exon deletion and novel missense mutations. Eur J Hum Genet 12:979-2. doi:10.1038/sj.ejhg.52012575201257 CrossRef
  • 作者单位:Yee-Ki Lee (1)
    Philip Wing-Lok Ho (2)
    Revital Schick (3) (4) (5)
    Yee-Man Lau (1)
    Wing-Hon Lai (1)
    Ting Zhou (6)
    Yanhua Li (6)
    Kwong-Man Ng (1)
    Shu-Leung HO (2)
    Miguel Angel Esteban (6)
    Ofer Binah (3) (4) (5)
    Hung-Fat Tse (1)
    Chung-Wah Siu (1) (7)

    1. Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
    2. Neurology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
    3. Department of Physiology, The Sohnis Family Stem Cells Center, Technion - Israel Institute of Technology, Haifa, Israel
    4. Department of Physiology, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
    5. Department of Physiology, Ruth & Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
    6. Stem Cell and Cancer Biology Group, Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
    7. Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Rm 1929A, Block K, Hong Kong, China
  • ISSN:1432-2013
文摘
Friedreich ataxia (FRDA), a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy, is due to GAA repeat expansions within the first intron of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron–sulfur cluster biosynthesis. The triplet codon repeats lead to heterochromatin-mediated gene silencing and loss of frataxin. Nevertheless, inadequacy of existing FRDA-cardiac cellular models limited cardiomyopathy studies. We tested the hypothesis that iron homeostasis deregulation accelerates reduction in energy synthesis dynamics which contributes to impaired cardiac calcium homeostasis and contractile force. Silencing of FXN expressions occurred both in somatic FRDA-skin fibroblasts and two of the induced pluripotent stem cells (iPSC) clones; a sign of stress condition was shown in FRDA-iPSC cardiomyocytes with disorganized mitochondrial network and mitochondrial DNA (mtDNA) depletion; hypertrophic cardiac stress responses were observed by an increase in α-actinin-positive cell sizes revealed by FACS analysis as well as elevation in brain natriuretic peptide (BNP) gene expression; the intracellular iron accumulated in FRDA cardiomyocytes might be due to attenuated negative feedback response of transferring receptor (TSFR) expression and positive feedback response of ferritin (FTH1); energy synthesis dynamics, in terms of ATP production rate, was impaired in FRDA-iPSC cardiomyocytes, which were prone to iron overload condition. Energetic insufficiency determined slower Ca2+ transients by retarding calcium reuptake to sarcoplasmic reticulum (SR) and impaired the positive inotropic and chronotropic responses to adrenergic stimulation. Our data showed for the first time that FRDA-iPSCs cardiac derivatives represent promising models to study cardiac stress response due to impaired iron homeostasis condition and mitochondrial damages. The cardiomyopathy phenotype was accelerated in an iron-overloaded condition early in calcium homeostasis aspect.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700