x Y x Ba2Ca2Cu3δ (x=0, 0.04, 0.06, 0.08, 0.1) samples have been carried out by following Lawrence & Doniach (LD) and Maki-Thompson (MT) models. In the critical regime important superconductivity parameters have been elucidated by employing Ginzburg-Landau number N G of Ginzburg Landau theory. Our samples have shown a decrease in the T cx Y x Ba2Ca2Cu3δ (x=0, 0.04, 0.06, 0.08, 0.1) which shows a decrease in the density of charge carriers in the conducting CuO2 planes. Since the Fermi vectors of the carriers, K F=[3π 2 N/V]1/3=[3π 2 n]1/3, their coherence length along the c-axis, ξ c=?K F/2mΔ, and the Fermi velocity, V F=?K F/m depend on density of mobile charge carriers, the doping of Y+3 suppresses it and hence the superconductivity parameters. We have confirmed these conjectures with the excess conductivity analyses (FIC) of our conductivity data. The FIC analysis of conductivity data has shown a decrease in the values of ξ c, V F, B c(0), B c1(0) and J c(0) with increase doping of Y (except for the samples with x=0.04). The width of two dimensional conductivity regimes is shrunken with increased Y-doping. From these studies it is concluded that presence of Y+3 in the unit cell of TlBa2Ca2Cu3δ impedes the flow of the mobile charge carriers to the conducting CuO2 planes which induce suppression in the superconductivity parameters. The studies also stress the vital role of mobile charge carriers in the mechanism of high temperature superconductivity." />
Excess Conductivity Analysis of Tl1?em class="a-plus-plus">x Y x Ba2Ca2Cu 详细信息    查看全文
  • 作者:Nawazish A. Khan (1)
    Saleem Abbas (1)
    Syed M. Husnain Gardezi (2)
  • 关键词:Y ; doped Tl1?x Y x Ba2Ca2Cu3O10?δsuperconductors ; Fermi velocity of the carriers ; Shrunken width 2D conductivity by Y doping
  • 刊名:Journal of Low Temperature Physics
  • 出版年:2013
  • 出版时间:2 - July 2013
  • 年:2013
  • 卷:172
  • 期:1
  • 页码:70-83
  • 全文大小:648KB
  • 参考文献:1. N.A. Khan, A.A. Khurram, Appl. Phys. Lett. 86, 152502 (2005) CrossRef
    2. N.A. Khan, G. Husnain, Physica C 436, 51 (2006) CrossRef
    3. M. Mumtaz, N.A. Khan, F. Ashraf, J. Supercond. Nov. Magn. 24, 1985-989 (2011) and references there in CrossRef
    4. A.L. Solov’ev, V.M. Dmitriev, Low Temp. Phys. 35, 169 (2009) CrossRef
    5. A.L. Solovjov, V.M. Dmitriev, Low Temp. Phys. 32, 99 (2006) CrossRef
    6. L.G. Aslamazov, A.L. Larkin, Phys. Lett. A 26, 238 (1968) CrossRef
    7. W.E. Lawrence, S. Doniach, in / Proceedings of the Twelfth International Conference on Low Temperature Physics, ed. by E. Kanda (Keigaku, Tokyo, 1971), p. 361
    8. K. Maki, Prog. Theor. Phys. 39, 897 (1968) CrossRef
    9. R.S. Thompson, Phys. Rev. B 1, 327 (1970) CrossRef
    10. S. Hikami, A.I. Larkin, Mod. Phys. Lett. B 2, 693 (1988) CrossRef
    11. B. Oh, K. Char, A.D. Kent, M. Naito, M.R. Beasley, T.H. Geballe, R.H. Hammond, A. Kapitulnik, J.M. Grabeal, Phys. Rev. B 37, 7861 (1988) CrossRef
    12. A.L. Solovjov, H.-U. Habermeier, T. Haage, Fiz. Nizk. Temp. 28, 24 (2002). Low Temp. Phys. 28, 17 (2002)
    13. A.K. Ghosh, S.K. Bandyopadhyay, P. Barat, P. Sen, A.N. Basu, Physica C 264, 255 (1996) CrossRef
    14. P.P. Fietas, C.C. Tsuei, T.S. Plaskett, Phys. Rev. B 36, 833 (1987) CrossRef
    15. M. Ausloos, C. Laurent, Phys. Rev. B 37, 611 (1988) CrossRef
    16. G. Balestrino, Phys. Rev. B 46, 14919 (1992) CrossRef
    17. A.K. Ghosh, S.K. Bandyopadhyay, P. Barat, P. Sen, A.N. Basu, Physica C 255, 319 (1995) CrossRef
    18. U.C. Upreti, A.V. Narlikar, Solid State Commun. 100(9), 615 (1996) CrossRef
    19. A. Poddar, P. Mandal, A.N. Das, B. Ghosh, P. Choudhury, Physica C 161, 567 (1989) CrossRef
    20. F. Vidal, J.A. Veira, J. Maza, J.J. Ponte, F. Garcia-Alvarado, E. Moran, J. Amador, C. Cascales, A. Castro, M.T. Casais, I. Rasines, Physica C 156, 807 (1988) CrossRef
    21. S. Ravi, V.S. Bai, Physica C 182, 345 (1991) CrossRef
    22. P. Mandal, A. Poddar, A.N. Das, B. Gosh, P. Choudhary, Physica C, Supercond. 169, 43 (1990) CrossRef
    23. M.O. Mun, M.K. Jon, Phys. Rev. B 48, 6073 (1993) CrossRef
    24. S.H. Han, J. Axnas, B.R. Zhao, O. Rapp, Physica C 408, 679 (2004) CrossRef
    25. H. Ihara, A. Iyo, K. Tanaka, K. Tokiwa, K. Ishida, N. Terada, M. Tokumoto, Y. Sekita, T. Tsukamoto, T. Wtanabe, M. Umeda, Physica C 282, 1973 (1997) CrossRef
    26. H. Kotigawa, Y. Tokunaga, K. Ishida, G.Q. Zang, Y. Kitaoka, K. Asayama, H. Kito, A. Iyo, H. Ihara, K. Tanaka, K. Tokiwa, T. Wtanabe, J. Phys. Chem. Solids 62, 171 (2001) CrossRef
    27. N.A. Khan, N. ul-Hassan, Mater. Chem. Phys. 105, 298 (2007) matchemphys.2007.04.064">CrossRef
    28. M. Mumtaz, N.A. Khan, Physica B 404, 3973 (2009) CrossRef
    29. N.A. Khan, N. Hassan, Physica C 466, 106 (2007) CrossRef
    30. N. Hassan, N.A. Khan, J. Alloys Compd. 464, 550 (2008) m.2007.10.036">CrossRef
    31. S.H. Han, O. Rapp, Solid State Commun. 94, 661 (1995) CrossRef
    32. A.L. Solovjov, V.M. Dmitriev, Low Temp. Phys. 32, 99 (2006) CrossRef
    33. A.L. Solovjov, H.-U. Habermeier, T. Haage, Fiz. Nizk. Temp. 28, 144 (2002). Low Temp. Phys. 28, 99 (2002)
    34. A.L. Solovjov, V.M. Dmitriev, Low Temp. Phys. 35(3), 169 (2009) CrossRef
    35. A.L. Solovjov, V.M. Dmitriev, H.-U. Habermeier, Phys. Rev. B 55, 8551 (1997) CrossRef
    36. M.-O. Mun, S.-I. Lee, S.-H. Suck Salk, H.J. Shin, M.K. Joo, Phys. Rev. B 48, 6703 (1993) CrossRef
    37. N. Mori, J.A. Wilson, H. Ozaki, Phys. Rev. B 45(10), 633 (1992)
  • 作者单位:Nawazish A. Khan (1)
    Saleem Abbas (1)
    Syed M. Husnain Gardezi (2)

    1. Materials Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad, 45320, Pakistan
    2. Department of General Studies (Physics), Yanbu University College, Yanbu Industrial City, P.B. Box: 31387, Kingdom of Saudi Arabia
  • ISSN:1573-7357
文摘
Excess conductivity analyses of resistivity data of Tl1?em class="a-plus-plus">x Y x Ba2Ca2Cu3O10?em class="a-plus-plus">δ (x=0, 0.04, 0.06, 0.08, 0.1) samples have been carried out by following Lawrence & Doniach (LD) and Maki-Thompson (MT) models. In the critical regime important superconductivity parameters have been elucidated by employing Ginzburg-Landau number N G of Ginzburg Landau theory. Our samples have shown a decrease in the T c (R=0) and magnitude of diamagnetism with increased Y-doping. The cell parameters and volume of the unit cell increase with doping of Y+3 in Tl1?em class="a-plus-plus">x Y x Ba2Ca2Cu3O10?em class="a-plus-plus">δ (x=0, 0.04, 0.06, 0.08, 0.1) which shows a decrease in the density of charge carriers in the conducting CuO2 planes. Since the Fermi vectors of the carriers, K F=[3π 2 N/V]1/3=[3π 2 n]1/3, their coherence length along the c-axis, ξ c=?K F/2mΔ, and the Fermi velocity, V F=?K F/m depend on density of mobile charge carriers, the doping of Y+3 suppresses it and hence the superconductivity parameters. We have confirmed these conjectures with the excess conductivity analyses (FIC) of our conductivity data. The FIC analysis of conductivity data has shown a decrease in the values of ξ c, V F, B c(0), B c1(0) and J c(0) with increase doping of Y (except for the samples with x=0.04). The width of two dimensional conductivity regimes is shrunken with increased Y-doping. From these studies it is concluded that presence of Y+3 in the unit cell of TlBa2Ca2Cu3O10?em class="a-plus-plus">δ impedes the flow of the mobile charge carriers to the conducting CuO2 planes which induce suppression in the superconductivity parameters. The studies also stress the vital role of mobile charge carriers in the mechanism of high temperature superconductivity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700