Aggregate size and structure determination of nanomaterials in physiological media: importance of dynamic evolution
详细信息    查看全文
  • 作者:A. R. M. Nabiul Afrooz (1)
    Saber M. Hussain (2)
    Navid B. Saleh (1)
  • 关键词:Gold nanoparticles ; Dynamic light scattering ; Static light scattering ; Network structure ; In vitro ; Effective dosimetry ; Dosage
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:16
  • 期:12
  • 全文大小:762 KB
  • 参考文献:1. Afrooz ARMN, Khan IA, Hussain SM, Saleh NB (2013) Mechanistic heteroaggregation of gold nanoparticles in a wide range of solution chemistry. Environ Sci Technol 47:1853鈥?860. doi:10.1021/es3032709 CrossRef
    2. Afrooz ARM, Sivalapalan ST, Murphy CJ, Hussain SM, Schlager JJ, Saleh NB (2013) Spheres vs. rods: The shape of gold nanoparticles influences aggregation and deposition behavior. Chemosphere 91(1):93鈥?8. doi:10.1016/j.chemosphere.2012.11.031
    3. Allison AC (1971) Lysosomes and toxicity of particulate pollutants. Arch Intern Med 128:131. doi:10.1001/archinte.128.1.131 CrossRef
    4. Cho EC, Zhang Q, Xia Y (2011) The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6:385鈥?91. doi:10.1038/nnano.2011.58 CrossRef
    5. Cl茅ment L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants鈥擡ffects of size and crystalline structure. Chemosphere 90:1083鈥?090. doi:10.1016/j.chemosphere.2012.09.013 mosphere.2012.09.013" target="_blank" title="It opens in new window">CrossRef
    6. Hauck TS, Ghazani AA, Chan WC (2008) Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4:153鈥?59 mll.200700217" target="_blank" title="It opens in new window">CrossRef
    7. Kante B et al (1982) Toxicity of polyalkylcyanoacrylate nanoparticles I: Free nanoparticles. J Pharm Sci 71:786鈥?90 CrossRef
    8. Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW (2012) Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res Part A 100A:1033鈥?043. doi:10.1002/jbm.a.34053 m.a.34053" target="_blank" title="It opens in new window">CrossRef
    9. Lamer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847鈥?854. doi:10.1021/ja01167a001 CrossRef
    10. Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P (1989) Universality in colloid aggregation. Nature 339:360鈥?62. doi:10.1038/339360a0 CrossRef
    11. Lison D et al (2008) Nominal and effective dosimetry of silica nanoparticles in cytotoxicity assays. Toxicol Sci 104:155鈥?62. doi:10.1093/toxsci/kfn072 CrossRef
    12. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium Dioxide (P25) Produces Reactive Oxygen Species in Immortalized Brain Microglia (BV2): implications for Nanoparticle Neurotoxicity. Environ Sci Technol 40:4346鈥?352. doi:10.1021/es060589n CrossRef
    13. Long TC et al (2007) Nanosize Titanium Dioxide Stimulates Reactive Oxygen Species in Brain Microglia and Damages Neurons in vitro. Environ Health Perspect 115:1631鈥?637. doi:10.2307/4626985 CrossRef
    14. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622鈥?27. doi:10.1126/science.1114397 CrossRef
    15. Nel AE et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543鈥?57. doi:10.1038/nmat2442 mat2442" target="_blank" title="It opens in new window">CrossRef
    16. Oberdorster G et al (2005a) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part fibre toxicol 2:8. doi:10.1186/1743-8977-2-8 CrossRef
    17. Oberdorster G, Oberdorster E, Oberdorster J (2005b) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823鈥?39. doi:10.1289/ehp.7339 CrossRef
    18. Oberdorster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2鈥?5. doi:10.1080/17435390701314761 CrossRef
    19. Pasquini LM, Hashmi SM, Sommer TJ, Elimelech M, Zimmerman JB (2012) Impact of Surface Functionalization on Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes. Environ Sci Technol 46:6297鈥?305. doi:10.1021/es300514s CrossRef
    20. Pecora R (1985) Dynamic light scattering: Applications of photon correlation spectroscopy. Springer-Verlag, New York, LLC CrossRef
    21. Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanoparticle Res 10:795鈥?14. doi:10.1007/s11051-007-9315-6 CrossRef
    22. Poto膷nik J (2011) Commission Recommendation of 18 October 2011 on the definition of nanomaterial Text with EEA relevance Official. J Eur Union 275:38鈥?0
    23. Saleh NB, Pfefferle LD, Elimelech M (2010) Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ Sci Technol 44:2412鈥?418. doi:10.1021/es903059t CrossRef
    24. Schulze C et al (2008) Not ready to use鈥攐vercoming pitfalls when dispersing nanoparticles in physiological media. Nanotoxicology 2:51鈥?1. doi:10.1080/17435390802018378 CrossRef
    25. Shields SP, Richards VN, Buhro WE (2010) Nucleation control of size and dispersity in aggregative nanoparticle growth. A study of the coarsening kinetics of thiolate-capped gold nanocrystals. Chem Mater 22:3212鈥?225. doi:10.1021/cm100458b m100458b" target="_blank" title="It opens in new window">CrossRef
    26. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644鈥?0654 CrossRef
    27. Weitz DA, Oliveria M (1984) Fractal structures formed by kinetic aggregation of aqueous gold colloids. Phys Rev Lett 52:1433鈥?436. doi:10.1103/PhysRevLett.52.1433 CrossRef
    28. Wiogo HTR, Lim M, Bulmus V, Amal R Effects of surface functional groups on the aggregation stability of magnetite nanoparticles in biological media containing serum. In: Nanotechnology (IEEE-NANO), 2011 11th IEEE Conference on, 15鈥?8 August 2011. pp 841鈥?44 doi:z10.1109/nano.2011.6144499
    29. Wu H, Lattuada M, Morbidelli M (2013) Dependence of fractal dimension of DLCA clusters on size of primary particles. Adv Colloid Interface Sci 195:41. doi:10.1016/j.cis.2013.04.001 CrossRef
    30. Zhou D, Keller AA (2010) Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res 44:2948鈥?956. doi:10.1016/j.watres.2010.02.025 CrossRef
  • 作者单位:A. R. M. Nabiul Afrooz (1)
    Saber M. Hussain (2)
    Navid B. Saleh (1)

    1. Civil, Architectural and Environmental Engineering, The University of Texas, Austin, TX, 78712, USA
    2. Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA
  • ISSN:1572-896X
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700