Isotopic fractionation of oxygen and carbon in decomposed lower-mantle inclusions in diamond
详细信息    查看全文
  • 作者:Felix Kaminsky ; Jennifer Matzel ; Ben Jacobsen ; Ian Hutcheon
  • 刊名:Mineralogy and Petrology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:110
  • 期:2-3
  • 页码:379-385
  • 全文大小:541 KB
  • 参考文献:Akaogi M, Yano M, Tejima Y, Iijima M, Kojitani H (2004) High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5–CaTiSiO5 system. Phys Earth Planet Inter 143–144:145–156CrossRef
    Armstrong JP, Wilson MR, Barnett RL, Nowicki T, Kjarsgaard BA (2004) Mineralogy of primary carbonate-bearing hypabyssal kimberlite, Lac de Gras, Slave Province, Northwest Territories, Canada. Lithos 76:415–433CrossRef
    Brenker FE, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Kaminsky F (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 260:1–9CrossRef
    Buick IS, Gibson R, Wallmach T, Metz J (2000) The occurrence of cuspidine, foshagite and hillebrandite in calc-silcate xenoliths from the bushveld complex, South Africa. S Afr J Geol 103:249–254CrossRef
    Cartigny P (2005) Stable isotopes and the origin of diamond. Elements 1:79–84CrossRef
    Criss RE (2008) Terrestrial oxygen isotope variations and their implications for planetary lithospheres. Rev Mineral Geochem 68:511–526CrossRef
    Deines P, Harris JW, Robinson DN, Gurney JJ, Shee SR (1991) Carbon and oxygen isotope variations in diamond and graphite eclogites from Orapa, Botswana, and the nitrogen content of their diamonds. Geochim Cosmochim Acta 55:515–524CrossRef
    Dubrovinsky LS, Dubrovinskaia NA, Annersten H, Halenius E, Harryson H (2001) Stability of (Mg0.5Fe0.5)O and (Mg0.8 Fe0.2)O magnesiowüstites in the lower mantle. Eur J Mineral 13:857–861CrossRef
    Giuliani A, Phillips D, Kamenetsky VS, Fiorentini ML, Farquhar J, Kendrick MA (2014) Stable isotope (C, O, S) compositions of volatile-rich minerals in kimberlites: a review. Chem Geol 374–375:61–83CrossRef
    Harte B (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral Mag 74:189–215CrossRef
    Harte B, Hudson NFC (2013) Mineral associations in diamonds from the lowermost upper mantle and uppermost lower mantle. Spec Issue J Geol Soc India 1:235–254, Proceedings of the 10th International Kimberlite Conference, Vol. 1
    Harte B, Harris JW, Hutchison MT, Watt GR, Wilding MC (1999) Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In: Fei Y, Bertka CM, Mysen BO (eds), Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R. (Joe) Boyd. Geochem Soc Spec Publ 6: 125–153
    Ickert RB, Stachel T, Stern RA, Harris JW (2013) Diamond from recycled crustal carbon documented by coupled δ18O-δ13C measurements of diamonds and their inclusions. Earth Planet Inter 364:85–97CrossRef
    Jacob D, Jagoutz E, Lowry D, Mattey D, Kudrjavtseva G (1994) Diamondiferous eclogites from Siberia: remnants of archean oceanic crust. Geochim Cosmochim Acta 58:5191–5207CrossRef
    Jacob D, Jagoutz E, Lowry D, Zinngrebe E (1998) Comment on ‘the origins of Yakutian Eclogite Xenoliths’ by Snyder GA et al. J Petrol 39:1527–1533CrossRef
    Kaminsky FV (2012) Mineralogy of the lower mantle: a review of ‘super-deep’ mineral inclusions in diamond. Earth Sci Rev 110:127–147CrossRef
    Kaminsky FV, Sobolev NV (1985) Variations in carbon isotope composition within diamond crystals. Dokl Akad Nauk SSSR 285:1436–1439 (in Russian)
    Kaminsky FV, Wirth R (2011) Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Can Mineral 49:555–572CrossRef
    Kaminsky F, Wirth R, Matsyuk S, Schreiber A, Thomas R (2009) Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas. Mineral Mag 73:797–816CrossRef
    Kaminsky FV, Ryabchikov ID, Wirth R (2015) A primary natrocarbonatitic association in the deep earth. Mineral Petrol. doi:10.​1007/​s00710-015-0368-4
    Klein-BenDavid O, Pearson DG, Nowell GM, Ottley C, McNeill JCR, Cartigny P (2010) Mixed fluid sources involved in diamond growth constrained by Sr–Nd–Pb–C–N isotopes and trace elements. Earth Planet Sci Lett 289:123–133CrossRef
    Kostrovitskii SI, Solov’eva LV, Gornova MA, Alymova NV, Yakovlev DA, Ignat’ev AV, Velivetskaya TA, Suvorova LF (2012) Oxygen isotope composition in minerals of mantle parageneses from Yakutian kimberlites. Transact (Dokl) Russ Acad Sci/Earth Sci Sect 444:579–584
    Kushiro I, Yoder HS (1964) Breakdown of monticellite and akermanite at high pressures. Year B Carnegie Inst Wash 63:81–83
    Lowry D, Mattey DP, Harris JW (1999) Oxygen isotope composition of syngenetic inclusions in diamond from the Finsch Mine, RSA. Geochim Cosmochim Acta 63:1825–1836CrossRef
    Mattey D, Lowry D, MacPherson C (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett 128:231–241CrossRef
    Page FZ, Bin Fu B, Kita NT, Fournelle J, Spicuzza MJ, Schulze DJ, Viljoen F, Basei MAS, Valley JW (2007) Zircons from kimberlite: New insights from oxygen isotopes, trace elements, and Ti in zircon thermometry. Geochim Cosmochim Acta 71:3887–3903CrossRef
    Palot MP, Cartigny P, Harris JW, Kaminsky FV, Stachel T (2012) Evidence for deep mantle convection and primordial heterogeneity from N and C stable isotopes in diamond. Earth Planet Sci Lett 357–358:179–193CrossRef
    Rampone E, Hofmann AW (2012) A global overview of isotopic heterogeneities in the oceanic mantle. Lithos 148:247–261CrossRef
    Rollion-Bard C, Marin-Carbonne J (2011) Determination of SIMS matrix effects on oxygen isotopic compositions in carbonates. J Analyt Atom Spectrom 26:1285–128CrossRef
    Schulze DJ, Harte B, Valley JW, Brenan JM, Channer DMDR (2003) Extreme ctustal oxygen isotope signatures preserved in coesite in diamond. Nature 423:68–70CrossRef
    Schulze D, Harte B, Page FZ, Valley JW, Channer DMDR, Jaques AL (2013) Anticorrelation between low δ13C of eclogitic diamonds and high δ18O of their coesite and garnet inclusions requires a subduction origin. Geology 41:455–458CrossRef
    Slodzian G, Hillion F, Stadermann FJ, Zinner E (2004) QSA influences on isotopic ratio measurements. Appl Surf Sci 231–232:874–877CrossRef
    Snyder GA, Taylor LA, Jerde EA, Clayton RN, Mayedo TK, Deines P, Rossman GR, Sobolev NV (1995) Archean mantle heterogeneity and the origin of diamondiferous eclogites, Siberia: evidence from stable isotopes and hydroxyl in garnet. Am Mineral 80:799–809CrossRef
    Sobolev NV, Galimov EM, Smith CB, Yefimova ES, Maltsev KA, Hall EE, Usova LV (1989) Morphology, inclusions and carbon isotopic composition of diamonds from the King George alluvial deposit and the Argyle lamproitic pipe, Western Australia. Russ Geol Geophys 12:3–18
    Spetsius ZV, Griffin WL, Taylor LA, O’Reilly SY, Mityukhin SI, Valley JW, Spicuzza M (2008) Trace elements and oxygen isotopes in garnets from diamondiferous xenoliths, Nurbinskaya pipe, Yakutia: implications for diamond genesis. 9th International Kimberlite Conference, Frankfurt (No. 9IKC-A-00140)
    Srivastava RK, Heaman LM, Sinha AK, Shihua S (2005) Emplacement age and isotope geochemistry of Sung Valley alkaline–carbonatite complex, Shillong Plateau, northeastern India: Implications for primary carbonate melt and genesis of the associated silicate rocks. Lithos 81:33–54CrossRef
    Tappe S, Foley SF, Kjarsgaard BA, Romer RL, Heaman LM, Stracke A, Jenner GA (2008) Between carbonatite and lamproite - diamondiferous torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochim Cosmochim Acta 72:3258–3286CrossRef
    Thomassot E, Cartigny P, Harris JW, Vilhoen KS (2007) Methane-related diamond crystallization in the Earth’s mantle: stable isotope evidences from a single diamond-bearing xenoliths. Earth Planet Sci Lett 257:362–371CrossRef
    Valley JW, Kita NT (2009) In situ oxygen isotope geochemistry by ion microprobe, In: Fayek M (ed) MAC short course: secondary ion mass spectrometry in the earth sciences, 41: 19–63
    Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11CrossRef
    Viljoen KS, Schulze DG, Quadling AG (2005) Contrasting group I and group II eclogite xenolith petrogenesis: Petrological, trace element and isotopic evidence from eclogite, garnet-websterite and alkremite xenoliths in the kaalvallei kimberlite, South Africa. J Petrol 46:2059–2090CrossRef
    Wang Z, Bucholz C, Skinner B, Shimizu N, Eiler J (2011) Oxygen isotope constraints on the origin of high-Cr garnets from kimberlites. Earth Planet Sci Lett 312:337–347CrossRef
    Wilson MR, Kjarsgaard BA, Taylor B (2007) Stable isotope composition of magmatic and deuteric carbonate phases in hypabyssal kimberlite, Lac de Gras field, Northwest Territories, Canada. Chem Geol 242:435–454CrossRef
    Wirth R, Pinti D, Sano Y, Takahata N, Kaminsky F (2007) Indications of crustal carbon in lower-mantle Juina diamond as revealed by FIB/TEM and NanoSIMS investigations. AGU Fall Meeting, San Francisco, Abstract
    Wirth R, Kaminsky F, Matsyuk S, Schreiber A (2009) Unusual micro- and nano-inclusions in diamonds from the Juina Area, Brazil. Earth Planet Sci Lett 286:292–303CrossRef
  • 作者单位:Felix Kaminsky (1)
    Jennifer Matzel (2)
    Ben Jacobsen (2)
    Ian Hutcheon (2)
    Richard Wirth (3)

    1. KM Diamond Exploration Ltd., 2446 Shadbolt Lane, West Vancouver, BC, V7S 3J1, Canada
    2. Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94518, USA
    3. Department of Chemistry and Physics of Earth Materials, GeoForschungsZentrum Potsdam, D14473, Potsdam, Germany
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Mineralogy
    Geochemistry
  • 出版者:Springer Wien
  • ISSN:1438-1168
文摘
Two carbonatitic mineral assemblages, calcite + wollastonite and calcite + monticellite, which are encapsulated in two diamond grains from the Rio Soriso basin in the Juina area, Mato Grosso State, Brazil, were studied utilizing the NanoSIMS technique. The assemblages were formed as the result of the decomposition of the lower-mantle assemblage calcite + CaSi-perovskite + volatile during the course of the diamond ascent under pressure conditions from 15 to less than 0.8 GPa. The oxygen and carbon isotopic compositions of the studied minerals are inhomogeneous. They fractionated during the process of the decomposition of primary minerals to very varying values: δ18O from −3.3 to +15.4 ‰ SMOW and δ13C from −2.8 to +9.3 ‰ VPDB. These values significantly extend the mantle values for these elements in both isotopically-light and isotopically-heavy areas.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700