Degradation of Co3O4 anode in rechargeable lithium-ion battery: a semi-empirical approach to the effect of conducting material content
详细信息    查看全文
  • 作者:Woo-Sung Choi ; Sooyeon Hwang ; Wonyoung Chang…
  • 关键词:Conducting material ; Solid electrolyte interface ; Co3O4 ; Lithium ; ion battery
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:20
  • 期:2
  • 页码:345-352
  • 全文大小:1,058 KB
  • 参考文献:1.Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRef
    2.Cabana J, Monconduit L, Larcher D, Palacín MR (2010) Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22:E170–E192CrossRef
    3.Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon JM (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148:A285–A292CrossRef
    4.Dedryvère R, Laruelle S, Grugeon S, Poizot P, Gonbeau D, Tarascon JM (2004) Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium. Chem Mater 16:1056–1061CrossRef
    5.Ponrouch A, Taberna PL, Simon P, Palacín MR (2012) On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction. Electrochim Acta 61:13–18CrossRef
    6.Hu YY, Liu Z, Nam KW, Borkiewicz OJ, Cheng J, Hua X, Dunstan MT, Yu X, Wiaderek KM, Du LS, Chapman KW, Chupas PJ, Yang XQ, Grey CP (2013) Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat Mater 12:1130–1136CrossRef
    7.Wang GX, Chen Y, Konstantinov K, Yao J, Ahn J, Liu HK, Dou SX (2002) Nanosize cobalt oxides as anode materials for lithium-ion batteries. J Alloy Compd 340:L5–L10CrossRef
    8.Yang S, Cui G, Pang S, Cao Q, Kolb U, Feng X, Maier J, Müllen K (2010) Fabrication of cobalt and cobalt oxide/graphene composites: Towards high-performance anode materials for lithium ion batteries. Chem Sus Chem 3:236–239CrossRef
    9.Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng HM (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194CrossRef
    10.Kim H, Seo DH, Kim SW, Kim J, Kang K (2011) Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon 49:326–332CrossRef
    11.Jayaprakash N, Jones WD, Moganty SS, Archer LA (2012) Composite lithium battery anodes based on carbon@Co3O4 nanostructures: Synthesis and characterization. J Power Sources 200:53–58CrossRef
    12.Hang BT, Doi T, Okada S, Yamaki J (2007) Effect of carbonaceous materials on electrochemical properties of nano-sized Fe2O3-loaded carbon as a lithium battery negative electrode. J Power Sources 174:493–500CrossRef
    13.Cho HM, Park YJ, Yeon JW, Shin HC (2009) In-depth investigation on two- and three-electrode impedance measurements in terms of the effect of the counter electrode. Electron Mater Lett 5:169–178CrossRef
    14.Cho HM, Park YJ, Shin HC (2010) Semiempirical analysis of time-dependent elementary polarizations in electrochemical cells. J Electrochem Soc 157:A8–A18CrossRef
    15.Cho HM, Shin HC (2010) Analysis of cell impedance for the design of a high-power lithium-ion battery. In: Dahlin GR, Strom KE (eds) Lithium batteries: research, technology and applications. Nova Science, New York, pp 73–118
    16.Fischer A, Jindra J, Wendt H (1998) Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells. J Appl Electrochem 28:277–282CrossRef
    17.Thackeray MM, Baker SD, Adendorff KT, Goodenough JB (1985) Lithium insertion into Co3O4: A preliminary investigation. Solid State Ionics 17:175–181CrossRef
    18.Larcher D, Sudant G, Leriche JB, Chabre Y, Tarascon JM (2002) The electrochemical reduction of Co3O4 in a lithium cell. J Electrochem Soc 149:A234–A241CrossRef
    19.Fu ZW, Wang Y, Zhang Y, Qin QZ (2004) Electrochemical reaction of nanocrystalline Co3O4 thin film with lithium. Solid State Ionics 170:105–109CrossRef
    20.Uchida I, Sato H (1995) Preparation of binder‐free, thin film LiCoO2 and its electrochemical responses in a propylene carbonate solution. J Electrochem Soc 142:L139–L141CrossRef
    21.Shin H-C, Pyun S-I (1999) An investigation of the electrochemical intercalation of lithium into a Li1−δCoO2 electrode based upon numerical analysis of potentiostatic current transients. Electrochim Acta 44:2235–2244CrossRef
    22.Shin H-C, Pyun S-I (2001) Investigation of lithium transport through lithium cobalt dioxide thin film sputter-deposited by analysis of cyclic voltammogram. Electrochim Acta 46:2477–2485CrossRef
    23.Hengguo W, Delong M, Xiaolei H, Yun H, Xinbo Z (2012) General and controllable synthesis strategy of metal oxide/TiO2 hierarchical heterostructures with improved lithium-ion battery performance. Sci Rep 2:701–708
    24.Kaina S, Wentao L, Yongmei L, Wenguang Z, Hui Y, Jiqing X, Zuyan L, Shu-Lei C, Lingzhi Z, Ronghua Z (2015) A novel shuttle-like Fe3O4–Co3O4 self-assembling architecture with highly reversible lithium storage. RSC Adv 5:70527–70535CrossRef
    25.Fransson L, Eriksson T, Edström GT, Thomas JO (2001) Influence of carbon black and binder on Li-ion batteries. J Power Sources 101:1–9CrossRef
    26.Fong R, Sacken U, Dahn JR (1990) Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc 137:2009–2013CrossRef
    27.Winter M, Novák P, Monnier A (1998) Graphites for lithium‐ion cells: the correlation of the first‐cycle charge loss with the brunauer‐emmett‐teller surface area. J Electrochem Soc 145:428–436CrossRef
    28.Safari M, Morcrette M, Teyssot A, Delacourt C (2009) Multimodal physics-based aging model for life prediction of Li-ion batteries. J Electrochem Soc 156:A145–A153CrossRef
    29.Pinson MB, Bazant MZ (2013) Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction. J Electrochem Soc 160:A243–A250CrossRef
    30.Débart A, Dupont L, Poizot P, Leriche JB, Tarascon JM (2001) A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J Electrochem Soc 148:A1266–A1274CrossRef
    31.Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55:6332–6341CrossRef
    32.Nielsen LE (1966) Simple theory of stress–strain properties of filled polymers. J Appl Polym Sci 10:97–103CrossRef
    33.Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos Sci Technol 62:1327–1340CrossRef
  • 作者单位:Woo-Sung Choi (1)
    Sooyeon Hwang (2)
    Wonyoung Chang (2)
    Heon-Cheol Shin (1)

    1. School of Materials Science and Engineering, Pusan National University, Busan, 609-735, Korea
    2. Center for Energy Convergence, Korea Institute of Science and Technology, Seoul, 136-791, Korea
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
A large amount of conducting materials has typically been blended with transition metal oxides (MxOy, M = Fe, Co, Ni, Cu), and their electrochemical properties as the anode in lithium-ion batteries have been studied. Here, we report that a higher content of the conducting material results in poorer cycling stability of Co3O4. From the analysis of the cumulative irreversible capacity loss, a high content of conducting material is proven to promote irreversible electron consumption for the growth of a polymeric surface layer which is the origin of degradation. Furthermore, its formation is mathematically modeled on the basis of the Butler–Volmer relation. From the physical parameters of the polymeric surface layer determined by fitting the model to the experimental data, the degradation mechanism of Co3O4 is discussed. Keywords Conducting material Solid electrolyte interface Co3O4 Lithium-ion battery

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700