Widespread, focal copy number variations (CNV) and whole chromosome aneuploidies in Trypanosoma cruzi strains revealed by array comparative genomic hybridization
详细信息    查看全文
  • 作者:Todd A Minning (1)
    D Brent Weatherly (1)
    Stephane Flibotte (2)
    Rick L Tarleton (1)
  • 刊名:BMC Genomics
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 全文大小:1481KB
  • 参考文献:1. Tibayrenc M, Ward P, Moya A, Ayala FJ: Natural populations of Trypanosoma cruzi, the agent of Chagas disease, have a complex multiclonal structure. / Proc Natl Acad Sci USA 1986, 83 (1) : 115鈥?19. CrossRef
    2. Woo PT, Soltys MA: Animals as reservoir hosts of human trypanosomes. / Journal of wildlife diseases 1970, 6 (4) : 313鈥?22.
    3. Tibayrenc M: Genetic subdivisions within Trypanosoma cruzi (Discrete Typing Units) and their relevance for molecular epidemiology and experimental evolution. / Kinetoplastid Biol Dis 2003, 2 (1) : 12. CrossRef
    4. Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, Guhl F, Lages-Silva E, Macedo AM, Machado CR, Miles MA, Romanha AJ, Sturm NR, Tibayrenc M, Schijman AG: A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. / Mem Inst Oswaldo Cruz 2009, 104 (7) : 1051鈥?054. CrossRef
    5. Westenberger SJ, Barnabe C, Campbell DA, Sturm NR: Two hybridization events define the population structure of Trypanosoma cruzi. / Genetics 2005, 171 (2) : 527鈥?43. CrossRef
    6. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, / et al.: The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. / Science 2005, 309 (5733) : 409鈥?15. CrossRef
    7. Martin DL, Weatherly DB, Laucella SA, Cabinian MA, Crim MT, Sullivan S, Heiges M, Craven SH, Rosenberg CS, Collins MH, Sette A, Postan M, Tarleton RL: CD8+ T-Cell responses to Trypanosoma cruzi are highly focused on strain-variant trans-sialidase epitopes. / PLoS pathogens 2006, 2 (8) : e77. CrossRef
    8. Buscaglia CA, Campo VA, Frasch AC, Di Noia JM: Trypanosoma cruzi surface mucins: host-dependent coat diversity. / Nature reviews 2006, 4 (3) : 229鈥?36. CrossRef
    9. Weatherly DB, Boehlke C, Tarleton RL: Chromosome level assembly of the hybrid Trypanosoma cruzi genome. / BMC genomics 2009, 10: 255. CrossRef
    10. Xu D, Brandan CP, Basombrio MA, Tarleton RL: Evaluation of high efficiency gene knockout strategies for Trypanosoma cruzi. / BMC microbiology 2009, 9: 90. CrossRef
    11. Brisse S, Dujardin JC, Tibayrenc M: Identification of six Trypanosoma cruzi lineages by sequence-characterised amplified region markers. / Mol Biochem Parasitol 2000, 111 (1) : 95鈥?05. CrossRef
    12. Tomazi L, Kawashita SY, Pereira PM, Zingales B, Briones MR: Haplotype distribution of five nuclear genes based on network genealogies and Bayesian inference indicates that Trypanosoma cruzi hybrid strains are polyphyletic. / Genet Mol Res 2009, 8 (2) : 458鈥?76. CrossRef
    13. Llewellyn MS, Miles MA, Carrasco HJ, Lewis MD, Yeo M, Vargas J, Torrico F, Diosque P, Valente V, Valente SA, Gaunt MW: Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection. / PLoS pathogens 2009, 5 (5) : e1000410. CrossRef
    14. Reina-San-Martin B, Degrave W, Rougeot C, Cosson A, Chamond N, Cordeiro-Da-Silva A, Arala-Chaves M, Coutinho A, Minoprio P: A B-cell mitogen from a pathogenic trypanosome is a eukaryotic proline racemase. / Nature medicine 2000, 6 (8) : 890鈥?97. CrossRef
    15. Hurles M: Gene duplication: the genomic trade in spare parts. / PLoS biology 2004, 2 (7) : E206. CrossRef
    16. Brown MV, Reader JS, Tzima E: Mammalian aminoacyl-tRNA synthetases: cell signaling functions of the protein translation machinery. / Vascular pharmacology 52 (1鈥?) : 21鈥?6.
    17. Jones C, Todeschini AR, Agrellos OA, Previato JO, Mendonca-Previato L: Heterogeneity in the biosynthesis of mucin O-glycans from Trypanosoma cruzi tulahuen strain with the expression of novel galactofuranosyl-containing oligosaccharides. / Biochemistry 2004, 43 (37) : 11889鈥?1897. CrossRef
    18. Spadiliero B, Nicolini C, Mascetti G, Henriquez D, Vergani L: Chromatin of Trypanosoma cruzi: In situ analysis revealed its unusual structure and nuclear organization. / Journal of cellular biochemistry 2002, 85 (4) : 798鈥?08. CrossRef
    19. Polakova S, Blume C, Zarate JA, Mentel M, Jorck-Ramberg D, Stenderup J, Piskur J: Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata. / Proc Natl Acad Sci USA 2009, 106 (8) : 2688鈥?693. CrossRef
    20. Muller H, Thierry A, Coppee JY, Gouyette C, Hennequin C, Sismeiro O, Talla E, Dujon B, Fairhead C: Genomic polymorphism in the population of Candida glabrata: gene copy-number variation and chromosomal translocations. / Fungal Genet Biol 2009, 46 (3) : 264鈥?76. CrossRef
    21. Andrade S: Caracterizacao de cepas do Trypanosoma cruzi isoladas no Reconcavo Bahiano. / Revista de Patologica Tropical 1974, 3: 65鈥?21.
    22. Andrade SG, Magalhaes JB: Biodemes and zymodemes of Trypanosoma cruzi strains: correlations with clinical data and experimental pathology. / Rev Soc Bras Med Trop 1996, 30 (1) : 27鈥?5. CrossRef
    23. Zingales B, Stolf BS, Souto RP, Fernandes O, Briones MR: Epidemiology, biochemistry and evolution of Trypanosoma cruzi lineages based on ribosomal RNA sequences. / Mem Inst Oswaldo Cruz 1999, 94 (Suppl 1) : 159鈥?64. CrossRef
    24. Briones MR, Souto RP, Stolf BS, Zingales B: The evolution of two Trypanosoma cruzi subgroups inferred from rRNA genes can be correlated with the interchange of American mammalian faunas in the Cenozoic and has implications to pathogenicity and host specificity. / Mol Biochem Parasitol 1999, 104 (2) : 219鈥?32. CrossRef
    25. Hall CA, Polizzi C, Yabsley MJ, Norton TM: Trypanosoma cruzi prevalence and epidemiologic trends in lemurs on St. Catherines Island, Georgia. / J Parasitol 2007, 93 (1) : 93鈥?6. CrossRef
    26. Llewellyn MS, Lewis MD, Acosta N, Yeo M, Carrasco HJ, Segovia M, Vargas J, Torrico F, Miles MA, Gaunt MW: Trypanosoma cruzi IIc: phylogenetic and phylogeographic insights from sequence and microsatellite analysis and potential impact on emergent Chagas disease. / PLoS neglected tropical diseases 2009, 3 (9) : e510. CrossRef
    27. del Puerto R, Nishizawa JE, Kikuchi M, Iihoshi N, Roca Y, Avilas C, Gianella A, Lora J, Velarde FU, Renjel LA, Miura S, Higo H, Komiya N, Maemura K, Hirayama K: Lineage analysis of circulating Trypanosoma cruzi parasites and their association with clinical forms of Chagas disease in Bolivia. / PLoS neglected tropical diseases 4 (5) : e687.
    28. Muller LA, McCusker JH: A multispecies-based taxonomic microarray reveals interspecies hybridization and introgression in Saccharomyces cerevisiae. / FEMS yeast research 2009, 9 (1) : 143鈥?52. CrossRef
    29. Gaunt MW, Yeo M, Frame IA, Stothard JR, Carrasco HJ, Taylor MC, Mena SS, Veazey P, Miles GA, Acosta N, de Arias AR, Miles MA: Mechanism of genetic exchange in American trypanosomes. / Nature 2003, 421 (6926) : 936鈥?39. CrossRef
    30. Minning TA, Weatherly DB, Atwood J, Orlando R, Tarleton RL: The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. / BMC genomics 2009, 10: 370. CrossRef
    31. Ozaki LS, Cseko YMT: Genomic cloning and related techniques. In / Genes and antigens of parasites: A laboratory manual. second edition. Edited by: Morel CM. Rio de Janeiro, Brazil: Dept. of Biochemistry and Molecular Biology, Instituto Oswaldo Cruz; 1984.
    32. Flibotte S, Moerman DG: Experimental analysis of oligonucleotide microarray design criteria to detect deletions by comparative genomic hybridization. / BMC genomics 2008, 9: 497. CrossRef
    33. Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR, Cerrina F: Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. / Nature biotechnology 1999, 17 (10) : 974鈥?78. CrossRef
    34. Markham N: Hybrid: A software system for nucleic acid folding, hybridizing, and melting conditions. In / Rensselaer Polytechnic Institute. Troy, NY; 2003.
    35. Maydan JS, Flibotte S, Edgley ML, Lau J, Selzer RR, Richmond TA, Pofahl NJ, Thomas JH, Moerman DG: Efficient high-resolution deletion discovery in Caenorhabditis elegans by array comparative genomic hybridization. / Genome research 2007, 17 (3) : 337鈥?47. CrossRef
    36. R: A language and environment for statistical computing [http://www.R-project.org]
    37. Pan SC: Establishment of clones of Trypanosoma cruzi and their characterization in vitro and in vivo. / Bulletin of the World Health Organization 1982, 60 (1) : 101鈥?07.
    38. Miles MA, Toye PJ, Oswald SC, Godfrey DG: The identification by isoenzyme patterns of two distinct strain-groups of Trypanosoma cruzi, circulating independently in a rural area of Brazil. / Trans R Soc Trop Med Hyg 1977, 71 (3) : 217鈥?25. CrossRef
    39. Miles MA, Povoa MM, de Souza AA, Lainson R, Shaw JJ, Ketteridge DS: Chagas's disease in the Amazon Basin: Ii. The distribution of Trypanosoma cruzi zymodemes 1 and 3 in Para State, north Brazil. / Trans R Soc Trop Med Hyg 1981, 75 (5) : 667鈥?74. CrossRef
    40. Engel JC, Dvorak JA, Segura EL, Crane MS: Trypanosoma cruzi: biological characterization of 19 clones derived from two chronic chagasic patients. I. Growth kinetics in liquid medium. / The Journal of protozoology 1982, 29 (4) : 555鈥?60.
    41. Diosque P, Barnabe C, Padilla AM, Marco JD, Cardozo RM, Cimino RO, Nasser JR, Tibayrenc M, Basombrio MA: Multilocus enzyme electrophoresis analysis of Trypanosoma cruzi isolates from a geographically restricted endemic area for Chagas' disease in Argentina. / Int J Parasitol 2003, 33 (10) : 997鈥?003. CrossRef
    42. Postan M, Dvorak JA, McDaniel JP: Studies of Trypanosoma cruzi clones in inbred mice. I. A comparison of the course of infection of C3H/HEN- mice with two clones isolated from a common source. / Am J Trop Med Hyg 1983, 32 (3) : 497鈥?06.
    43. Basombrio MA, Besuschio S, Cossio PM: Side effects of immunization with liver attenuated Trypanosoma cruzi in mice and rabbits. / Infect Immun 1982, 36 (1) : 342鈥?50.
    44. Breniere SF, Bosseno MF, Telleria J, Bastrenta B, Yacsik N, Noireau F, Alcazar JL, Barnabe C, Wincker P, Tibayrenc M: Different behavior of two Trypanosoma cruzi major clones: transmission and circulation in young Bolivian patients. / Exp Parasitol 1998, 89 (3) : 285鈥?95. CrossRef
    45. Cariola J, Prado R, Agosin M, Christen R: Susceptibility of the hamster and Peromyscus to experimental Trypanosoma cruzi infection (Tulahuen strain). / Boletin de informaciones parasitarias chilenas 1950, 5 (4) : 44鈥?5.
    46. Brener Z, Chiari E: Morphological Variations Observed in Different Strains of Trypanosoma Cruzi. / Rev Inst Med Trop Sao Paulo 1963, 19: 220鈥?24.
    47. Carvalheiro Jda R, Collares EF: Studies on the behavior, in mice, of a highly virulent strain (Y strain) of Trypanosoma cruzi after passage in Triatoma, rats and cultures. / Revista brasileira de biologia 1965, 25 (2) : 169鈥?75.
    48. Brisse S, Barnabe C, Banuls AL, Sidibe I, Noel S, Tibayrenc M: A phylogenetic analysis of the Trypanosoma cruzi genome project CL Brener reference strain by multilocus enzyme electrophoresis and multiprimer random amplified polymorphic DNA fingerprinting. / Mol Biochem Parasitol 1998, 92 (2) : 253鈥?63. CrossRef
  • 作者单位:Todd A Minning (1)
    D Brent Weatherly (1)
    Stephane Flibotte (2)
    Rick L Tarleton (1)

    1. Center for Tropical and Emerging Global Diseases, University of Georgia, 30602, Athens, Georgia, USA
    2. Department of Zoology, University of British Columbia, V6T 1Z4, Vancouver, British Columbia, Canada
文摘
Background Trypanosoma cruzi is a protozoan parasite and the etiologic agent of Chagas disease, an important public health problem in Latin America. T. cruzi is diploid, almost exclusively asexual, and displays an extraordinarily diverse population structure both genetically and phenotypically. Yet, to date the genotypic diversity of T. cruzi and its relationship, if any, to biological diversity have not been studied at the whole genome level. Results In this study, we used whole genome oligonucleotide tiling arrays to compare gene content in biologically disparate T. cruzi strains by comparative genomic hybridization (CGH). We observed that T. cruzi strains display widespread and focal copy number variations (CNV) and a substantially greater level of diversity than can be adequately defined by the current genetic typing methods. As expected, CNV were particularly frequent in gene family-rich regions containing mucins and trans-sialidases but were also evident in core genes. Gene groups that showed little variation in copy numbers among the strains tested included those encoding protein kinases and ribosomal proteins, suggesting these loci were less permissive to CNV. Moreover, frequent variation in chromosome copy numbers were observed, and chromosome-specific CNV signatures were shared by genetically divergent T. cruzi strains. Conclusions The large number of CNV, over 4,000, reported here uphold at a whole genome level the long held paradigm of extraordinary genome plasticity among T. cruzi strains. Moreover, the fact that these heritable markers do not parse T. cruzi strains along the same lines as traditional typing methods is strongly suggestive of genetic exchange playing a major role in T. cruzi population structure and biology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700