Overexpression of a nitrile hydratase from Klebsiella oxytoca KCTC 1686 in Escherichia coli and its biochemical characterization
详细信息    查看全文
  • 作者:Fa-Mou Guo ; Jian-Ping Wu ; Li-Rong Yang ; Gang Xu
  • 关键词:nitrile hydratase ; recombinant expression ; Klebsiella oxytoca KCTC 1686 ; biotransformation ; enantioselective
  • 刊名:Biotechnology and Bioprocess Engineering
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:20
  • 期:6
  • 页码:995-1004
  • 全文大小:509 KB
  • 参考文献:1.AsANO, Y. (1980) A new enzyme “nitrile hydratase” which degrades acetonitrile in combination with amidase. Agric. Biol. Chem. 44: 2251–2252.CrossRef
    2.Sugiura, Y., J. Kuwahara, T. Nagasawa, and H. Yamada (1987) Nitrile hydratase: The first non-heme iron enzyme with a typical low-spin iron (III)-active center. J. Am. Chem. Soc. 109: 5848–5850.CrossRef
    3.Brennan, B. A., G. Alms, M. J. Nelson, L. T. Durney, and R. C. Scarrow (1996) Nitrile hydratase from Rhodococcus rhodochrous J1 contains a non-corrin cobalt ion with two sulfur ligands. J. Am. Chem. Soc. 118: 9194–9195.CrossRef
    4.Kobayashi, M. and S. Shimizu (1998) Metalloenzyme nitrile hydratase: Structure, regulation, and application to biotechnology. Nat. Biotechnol. 16: 733–736.CrossRef
    5.Zheng, R. C., Z. Y. Yang, C. C. Li, Y. G. Zheng, and Y. C. Shen (2014) Industrial production of chiral intermediate of cilastatin by nitrile hydratase and amidase catalyzed one-pot, two-step biotransformation. J. Mol. Catal. B-Enzym. 102: 161–166.CrossRef
    6.Pei, X. L., L. R. Yang, G. Xu, Q. Y. Wang, and J. P. Wu (2014) Discovery of a new Fe-type nitrile hydratase efficiently hydrating aliphatic and aromatic nitriles by genome mining. J. Mol. Catal. B-Enzym. 99: 26–33.CrossRef
    7.Mersinger, L. J., E. C. Hann, F. B. Cooling, J. E. Gavagan, A. Ben-Bassat, S. J. Wu, K. L. Petrillo, M. S. Payne, and R. DiCosimo (2005) Production of acrylamide using alginate-immobilized E. coli expressing Comamonas testosteroni 5-MGAM-4D nitrile hydratase. Adv. Synth. Catal. 347: 1125–1131.CrossRef
    8.Kim, B. Y., J. C. Kim, H. H. Lee, and H. H. Hyun (2001) Fedbatch fermentation for production of nitrile hydratase by Rhodococcus rhodochrous M33. Biotechnol. Bioproc. Eng. 6: 11–17.CrossRef
    9.Raj, J., A. Seth, S. Prasad, and T. C. Bhalla (2007) Bioconversion of butyronitrile to butyramide using whole cells of Rhodococcus rhodochrous PA-34. Appl. Microbiol. Biot. 74: 535–539.CrossRef
    10.Okamoto, S. and L. D. Eltis (2007) Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1. Mol. Microbiol. 65: 828–838.CrossRef
    11.Zheng, Y. G., J. Chen, Z. Q. Liu, M. H. Wu, L. Y. Xing, and Y. C. Shen (2008) Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium. Appl. Microbiol. Biot. 77: 985–993.CrossRef
    12.Wang, M. X., G. Lu, G. J. Ji, Z. T. Huang, O. Meth-Cohn, and J. Colby (2000) Enantioselective biotransformations of racemic a-substituted phenylacetonitriles and phenylacetamides using Rhodococcus sp. AJ270. Tetrahedron-Asymm. 11: 1123–1135.CrossRef
    13.Watanabe, I., Y. Satoh, K. Enomoto, S. Seki, and K. Sakashita (1987) Optimal conditions for cultivation of Rhodococcus sp. N-774 and for conversion of acrylonitrile to acrylamide by resting Cells. Agric. Biol. chem. 51: 3201–3206.CrossRef
    14.Nagasawa, T., K. Ryuno, and H. Yamada (1989) Superiority of Pseudomonas chlororaphis B23 nitrile hydratase as a catalyst for the enzymatic production of acrylamide. Experientia. 45: 1066–1070.CrossRef
    15.Nagasawa, T., H. Shimizu, and H. Yamada (1993) The superiority of the third-generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide. Appl. Microbiol. Biot. 40: 189–195.CrossRef
    16.Wang, Y. J., Y. G. Zheng, J. P. Xue, and Y. C. Shen (2007) Characterization of nitrile hydratation catalysed by Nocardia sp. 108. World J. Microbiol. Biotechnol. 23: 355–362.CrossRef
    17.Rzeznicka, K., S. Schaetzle, D. Boettcher, J. Klein, and U. T. Bornscheuer (2010) Cloning and functional expression of a nitrile hydratase (NHase) from Rhodococcus equi TG328-2 in Escherichia coli, its purification and biochemical characterisation. Appl. Microbiol. Biot. 85: 1417–1425.CrossRef
    18.Nojiri, M., M. Yohda, M. Odaka, Y. Matsushita, M. Tsujimura, T. Yoshida, N. Dohmae, K. Takio, and I. Endo (1999) Functional expression of nitrile hydratase in Escherichia coli: Requirement of a nitrile hydratase activator and post-translational modification of a ligand cysteine. J. Biochem. 125: 696–704.CrossRef
    19.Pei, X. L, H. Y. Zhang, L. J. Meng, G. Xu, L. R. Yang, and J. P. Wu (2013) Efficient cloning and expression of a thermostable nitrile hydratase in Escherichia coli using an auto-induction fedbatch strategy. Proc. Biochem. 48: 1921–1927.CrossRef
    20.Shi, Y., H. M. Yu, X. D. Sun, Z. L. Tian, and Z. Y. Shen (2004) Cloning of the nitrile hydratase gene from Nocardia sp. in Escherichia coli and Pichia pastoris and its functional expression using site-directed mutagenesis. Enz. Microb. Tech. 35: 557–562.CrossRef
    21.Wu, S., R. D. Fallon, and M. S. Payne (1999) Engineering Pichia pastoris for stereoselective nitrile hydrolysis by co-producing three heterologous proteins. Appl. Microbiol. Biot. 52: 186–190.CrossRef
    22.Mizunashi, W., M. Nishiyama, S. Horinouchi, and T. Beppu (1998) Overexpression of high-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1 in recombinant Rhodococcus cells. Appl. Microbiol. Biot. 49: 568–572.CrossRef
    23.Kang, M. S., S. S. Han, M. Y. Kim, B. Y. Kim, J. P. Huh, H. S. Kim, and J. H. Lee (2014) High-level expression in Corynebacterium glutamicum of nitrile hydratase from Rhodococcus rhodochrous for acrylamide production. Appl. Microbiol. Biot. 98: 4379–4387.CrossRef
    24.Kobayashi, M., M. Nishiyama, T. Nagasawa, S. Horinouchi, T. Beppu, and H. Yamada (1991) Cloning, nucleotide sequence and expression in Escherichia coli of two cobalt-containing nitrile hydratase genes from Rhodococcus rhodochrous J1. BBA-Gene. Struct. Expr. 1129: 23–33.CrossRef
    25.Chen, J., H. Yu, C. Liu, J. Liu, and Z. Shen (2012) Improving stability of nitrile hydratase by bridging the salt
    idges in specific thermal-sensitive regions. J. Biotechnol. 164: 354–362.CrossRef
    26.Wu, S., R. D. Fallon, and M. S. Payne (1997) Over-production of stereoselective nitrile hydratase from Pseudomonas putida 5B in Escherichia coli: Activity requires a novel downstream protein. Appl. Microbiol. Biot. 48: 704–708.CrossRef
    27.Prepachalova, I., L. Martinkova, A. Stolz, M. Ovesna, K. Bezouska, J. Kopecky, and V. Kren (2001) Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus equi A4. Appl. Microbiol. Biot. 55: 150–156.CrossRef
    28.Petrillo, K. L., S. J. Wu, E. C. Hann, F. B. Cooling, A. Ben-Bassat, J. E. Gavagan, R. DiCosimo, and M. S. Payne (2005) Overexpression in Escherichia coli of a thermally stable and regioselective nitrile hydratase from Comamonas testosteroni 5-MGAM-4D. Appl. Microbiol. Biot. 67: 664–670.CrossRef
    29.Bauer, R., H. J. Knackmuss, and A. Stolz (1998) Enantioselective hydration of 2-arylpropionitriles by a nitrile hydratase from Agrobacterium tumefaciens strain d3. Appl. Microbiol. Biot. 49: 89–95.CrossRef
    30.Pawar, S. V. and G. D. Yadav (2014) Enantioselective enzymatic hydrolysis of rac-mandelonitrile to R-mandelamide by nitrile hydratase immobilized on poly(vinyl alcohol)/chitosan-glutaraldehyde support. Ind. Eng. Chem. Res. 53: 7986–7991.CrossRef
    31.Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.CrossRef
    32.Chen, C. S., Y. Fujimoto, G. Girdaukas, and C. J. Sih (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 104: 7294–7299.CrossRef
    33.Kim, S. H. and P. Oriel (2000) Cloning and expression of the nitrile hydratase and amidase genes from Bacillus sp. BR449 into Escherichia coli. Enz. Microb. Tech. 27: 492–501.CrossRef
    34.Kuhn, M. L., S. Martinez, N. Gumataotao, U. Bornscheuer, D. Liu, and R. C. Holz (2012) The Fe-type nitrile hydratase from Comamonas testosteroni Ni1 does not require an activator accessory protein for expression in Escherichia coli. Biochem. Bioph. Res. Co. 424: 365–370.CrossRef
    35.Drechsel, O. and R. Bock (2011) Selection of Shine-Dalgarno sequences in plastids. Nucleic. Acids. Res. 39: 1427–1438.CrossRef
    36.Li, G. W., E. Oh, and J. S. Weissman (2012) The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Natur. 484: 538–541.CrossRef
    37.Yu, Q., Y. Li, A. Z. Ma, W. F. Liu, H. L. Wang, and G. Q. Zhuang (2011) An efficient design strategy for a whole-cell biosensor based on engineered ribosome binding sequences. Anal. Bioanal. Chem. 401: 2891–2898.CrossRef
    38.Liu, Y., W. J. Cui, Y. Y. Xia, Y. T. Cui, M. Kobayashi, and Z. M. Zhou (2012) Self-subunit swapping occurs in another gene type of cobalt nitrile hydratase. Plos One. 7: e50829.CrossRef
    39.Cowan, D., R. Cramp, R. Pereira, D. Graham, and Q. Almatawah (1998) Biochemistry and biotechnology of mesophilic and thermophilic nitrile metabolizing enzymes. Extremophil. 2: 207–216.CrossRef
    40.Nishiyama, M., S. Horinouchi, M. Kobayashi, T. Nagasawa, H. Yamada, and T. Beppu (1991) Cloning and characterization of genes responsible for metabolism of nitrile compounds from Pseudomonas chlororaphis B23. J. Bacteriol. 173: 2465–2472.
    41.Duran, R. (1998) New shuttle vectors for Rhodococcus sp. R312 (formerly Brevibacterium sp. R312), a nitrile hydratase producing strain. J. Basic Microb. 38: 101–106.CrossRef
    42.Nagasawa, T., H. Nanba, K. Ryuno, K. Takeuchi, and H. Yamada (1987) Nitrile hydratase of Pseudomonas chlororaphis B23. Eur. J. Biochem. 162: 691–698.CrossRef
  • 作者单位:Fa-Mou Guo (1)
    Jian-Ping Wu (1)
    Li-Rong Yang (1)
    Gang Xu (1)

    1. Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310-027, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
  • 出版者:The Korean Society for Biotechnology and Bioengineering
  • ISSN:1976-3816
文摘
The putative Co-type nitrile hydratase (NHaseK, consisting of α- and β-subunits) genes and the putative activator (17K) gene adjacent to the β subunit region were cloned from Klebsiella oxytoca KCTC 1686. 17K is essential for the functional expression of recombinant NHaseK in Escherichia coli; however, the expression level of 17K was very low when the 17K gene and NHaseK structural genes were expressed as a gene cluster in E. coli BL21(DE3). To improve the 17K expression level and NHaseK activity, the expression cassette was redesigned by placing the 17K gene and NHaseK structural genes under the control of different promoters in the pETDuet-1 expression vector, co-expressing the 17K gene with the gene cluster in a double plasmid or a single plasmid with a double promoter, and introducing an efficient Shine- Dalgarno sequence 5' to the17K gene. The specific activity of NHaseK was improved when 17K was co-expressed with the gene cluster, whereas the production of NHaseK protein decreased. The maximum activity was achieved when an efficient Shine-Dalgarno sequence was introduced 5' to the 17K gene: the expression level of 17K was significantly improved and the expression level of NHaseK did not decrease significantly. The maximum activity was about 63,480 ± 1915.6 U/L broth towards 3-Cyanopyridine. Recombinant NHaseK could hydrolyze a wide range of aliphatic, aromatic, and heterocyclic nitriles, and convert racemic nitriles to the corresponding S-amides, with E values ranging from 9 to 17. The enzyme had a temperature optimum of 35°C and exhibited remarkably stability below 35°C. Keywords nitrile hydratase recombinant expression Klebsiella oxytoca KCTC 1686 biotransformation enantioselective

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700