Acetylene hydratase: a non-redox enzyme with tungsten and iron–sulfur centers at the active site
详细信息    查看全文
  • 作者:Peter M. H. Kroneck
  • 关键词:Acetylene ; Tungsten ; Iron–sulfur ; Hydration ; Redox enzyme
  • 刊名:Journal of Biological Inorganic Chemistry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:21
  • 期:1
  • 页码:29-38
  • 全文大小:1,407 KB
  • 参考文献:1.Kletzin A, Adams MWW (1996) FEMS Microbiol Rev 18:5–63. doi:10.​1111/​j.​1574-6976.​1996.​tb00226.​x CrossRef PubMed
    2.Hille R (2002) TIBS 27:360–367. doi:10.​1016/​S0968-0004(02)02107-2 PubMed
    3.Stiefel EI (2002) Met Ions Biol Sys 39:1–29
    4.Bevers LE, Hagedoorn P-L, Hagen WR (2009) Coord Chem Rev 253:269–290. doi:10.​1016/​j.​ccr.​2008.​01.​017 CrossRef
    5.Zhang Y, Gladyshev VN (2008) J Mol Biol 379:881–899. doi:10.​1016/​j.​jmb.​2008.​03.​051 PubMedCentral CrossRef PubMed
    6.Schoepp-Cothenet B, van Lis R, Philippot P, Magalon A, Russell MJ, Nitschke W (2012) Sci Rep 2:263. doi:10.​1038/​srep00263 PubMedCentral CrossRef PubMed
    7.Mendel RR (2013) J Biol Chem 288:13165–13172. doi:10.​1074/​jbc.​R113.​455311 PubMedCentral CrossRef PubMed
    8.Grimaldi S, Schoepp-Cothenet B, Ceccaldi P, Guigliarelli B, Magalon A (2013) Biochim Biophys Acta 1827:1048–1085. doi:10.​1016/​j.​bbabio.​2013.​01.​011 CrossRef PubMed
    9.Hille R, Hall J, Basu P (2014) Chem Rev 114:3963–4038. doi:10.​1021/​cr400443z PubMedCentral CrossRef PubMed
    10.Pushie MJ, Cotelesage JJ, George GN (2014) Metallomics 6:15–24. doi:10.​1039/​c3mt00177f CrossRef PubMed
    11.Rothery RA, Weiner JH (2015) J Biol Inorg Chem 20:349–372. doi:10.​1007/​s00775-014-1194-6 CrossRef PubMed
    12.Maia LB, Moura JJG, Moura I (2015) J Biol Inorg Chem 20:287–309. doi:10.​1007/​s00775-014-1218-2 CrossRef PubMed
    13.Cerqueira NMFSA, Gonzalez PJ, Fernandes PA, Moura JJG, JoaoRamos M (2015) Acc Chem Res 48:2875–2884. doi:10.​1021/​acs.​accounts.​5b00333 CrossRef PubMed
    14.Leimkühler S, Iobbi-Nivol C (2015) FEMS Microbiol Rev. doi:10.​1093/​femsre/​fuv043 PubMed
    15.Bortels H (1936) Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abteilung 2, vol 95, pp 193–218
    16.Williams RJP, Frausto da Silva JJR (2002) Biochem Biophys Res Commun 292:293–299. doi:10.​1006/​bbrc.​2002.​6518 CrossRef PubMed
    17.Yamamoto I, Saiki T, Liu S-M, Ljungdahl (1983) J Biol Chem 258:1826–1832. http://​www.​jbc.​org/​content/​258/​3/​1826
    18.Johnson MK, Rees DC, Adams MWW (1996) Chem Rev 96:2817–2839. doi:10.​1021/​cr950063d CrossRef PubMed
    19.Moura JJG, Brondino CD, Trincao J, Romao MJ (2004) J Biol Inorg Chem 9:791–799. doi:10.​1007/​s00775-004-0573-9 CrossRef PubMed
    20.Andreesen JR, Makdessi K (2008) Ann NY Acad Sci 1125:215–229. doi:10.​1196/​annals.​1419.​003 CrossRef PubMed
    21.Bolster MWG (1997) Pure Appl Chem 69:1251–1303CrossRef
    22.Enemark JH, Cooney JJA, Wang JJ, Holm RH (2004) Chem Rev 104:1175–1200. doi:10.​1021/​cr020609d CrossRef PubMed
    23.Sugimoto H, Tsukube H (2008) Chem Soc Rev 37:2609–2619. doi:10.​1039/​b610235m CrossRef PubMed
    24.Chan MK, Mukund S, Kletzin A, Adams MWW, Rees DC (1995) Science 267:1463–1469. doi:10.​1126/​science.​7878465 CrossRef PubMed
    25.Frausto da Silva JJR, Williams RJP (2001) The biological chemistry of the elements, vol 2. Oxford University Press, Oxford
    26.Williams RJP, Frausto da Silva JJR (2003) J Theor Biol 220:323–343. doi:10.​1006/​jtbi.​2003.​3152 CrossRef PubMed
    27.Bräsen C, Esser D, Rauch B, Siebers B (2014) Microbiol Mol Biol Rev 78:89–175. doi:10.​1128/​MMBR.​00041-13
    28.Cameron V, House CH, Brantley SL (2012) Archaea, 12 pages. doi:10.​1155/​2012/​789278
    29.Williams RJB, Rickaby REM (2012) Evolution’s destiny: co-evolving chemistry of the environment and life. RSC Publishing. doi:10.​1039/​9781849735599
    30.Mann S, Thomson AJ (2015) Angew Chem Int Ed 54:7746. doi:10.​1002/​anie.​201504131 CrossRef
    31.Schink B (1985) Arch Microbiol 142:295–301. doi:10.​1007/​BF00693407 CrossRef
    32.Ten Brink F (2014) Met Ions Life Sci 14:15–35. doi:10.​1007/​978-94-017-9269-1_​2 CrossRef PubMed
    33.Bu‘lock JD (1956) Quarter Rev 10:371–394. doi:10.​1039/​QR9561000371
    34.Yamada EW, Jakoby WB (1958) J Biol Chem 233:706–711. http://​www.​jbc.​org/​content/​233/​3/​706.​citation
    35.Oremland RS, Voytek MA (2008) Astrobiology 8:45–58. doi:10.​1089/​ast.​2007.​0183 CrossRef PubMed
    36.Abbasian F, Lockington R, Megharaj M, Naidu R (2015) Appl Biochem Biotechnol. doi:10.​1007/​s12010-015-1881-y
    37.Hyman MR, Arp DJ (1988) Anal Biochem 173:207–220. doi:10.​1016/​0003-2697(88)90181-9 CrossRef PubMed
    38.Stewart WD, Fitzgerald GP, Burris RH (1967) Proc Natl Acad Sci (USA) 58:2071–2078CrossRef
    39.Burris RH (1969) Proc Roy Soc B 172:339–354. http://​www.​jstor.​org/​stable/​75888
    40.Shah VK, Chisnell JR, Brill WJ (1978) Biochem Biophys Res Commun 81:232–236. doi:10.​1016/​0006-291X(78)91654-6 CrossRef PubMed
    41.Rosner BM, Schink B (1995) J Bacteriol 177:5767–5772PubMedCentral PubMed
    42.Meckenstock RU, Krieger R, Ensign S, Kroneck PMH, Schink B (1999) Eur J Biochem 264:176–182. doi:10.​1046/​j.​1432-1327.​1999.​00600.​x CrossRef PubMed
    43.Schink B (2006) Prokaryotes 7:5–11. doi:10.​1007/​0-387-30747-8_​1 CrossRef
    44.Seiffert G (2007) PhD Dissertation, University of Konstanz, Germany
    45.Ten Brink F (2010) PhD Dissertation, University of Konstanz, Germany
    46.Schmidt A, Frensch M, Schleheck D, Schink B, Müller N (2014) PLoS One 9(12):e115902. doi:10.​1371/​journal.​pone.​0115902 PubMedCentral CrossRef PubMed
    47.Birch-Hirschfeld L (1932) Zentralblatt Bakteriologie und Parasitenkunde 86:113–129
    48.Kanner D, Bartha R (1979) J Bacteriol 139:225–230PubMedCentral PubMed
    49.De Bont JAM, Peck MW (1980) Arch Microbiol 127:99–104. doi:10.​1007/​BF00428012 CrossRef
    50.Culbertson CW, Strohmaier FE, Oremland RS (1988) Origins Life Evol Biosph 18:397–407. doi:10.​1007/​BF01808218 CrossRef
    51.Rosner BM, Rainey FA, Kroppenstedt RM, Schink B (1997) FEMS Microbiol Lett 148:175–180. doi:10.​1111/​j.​1574-6968.​1997.​tb10285.​x CrossRef PubMed
    52.Miller LG, Baesman SM, Kirshtein J, Voytek MA, Oremland RS (2013) Geomicrobiol J 30:501–516. doi:10.​1080/​01490451.​2012.​732662 CrossRef
    53.Seiffert GB, Abt D, Ten Brink F, Fischer D, Einsle O, Kroneck PMH (2008) In: Messerschmidt A (ed) Handbook of metalloproteins, vol 4 + 5, pp 541–548. Chichester
    54.Thaddeus P (2006) Phil Trans R Soc B 361:1681–1687. doi:10.​1098/​rstb.​2006 PubMedCentral CrossRef PubMed
    55.Kasting JF, Zahnle KJ, Walker JCG (1983) Precambrian Res 20:121–148. doi:10.​1016/​0301-9268(83)90069-4 CrossRef
    56.Zahnle KJ (1986) J Geophys Res 91:2819–2834. doi:10.​1029/​JD091iD02p02819 CrossRef
    57.Sagan C, Thompson WR (1984) Icarus 59:133–161. doi:10.​1016/​0019-1035(84)90018-6 CrossRef
    58.Schulze-Makuch D, Grinspoon DH (2005) Astrobiology 5:560–567CrossRef PubMed
    59.Cordier D, Mousis O, Lunine JI, Lavvas P, Vuitton V (2009) Astrophys J Lett 707:L128–L131. doi:10.​1088/​0004-637X/​707/​2/​L128 CrossRef
    60.Tokano T (2009) Astrobiology 9:147–164. doi:10.​1089/​ast.​2007.​0220 CrossRef PubMed
    61.Waite JH Jr, Combi MR, Ip W-H, Cravens TE, McNutt RL Jr, Kasprzak W, Yelle R, Luhmann J, Niemann H, Gell D, Magee B, Fletcher G, Lunine J, Tsen W-L (2006) Science 311:1419–1422. doi:10.​1126/​science.​1121290 CrossRef PubMed
    62.Matson DL, Castillo JC, Lunine J, Johnson TV (2007) Icarus 187:569–573. doi:10.​1016/​j.​icarus.​2006.​10.​016 CrossRef
    63.Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PMH, Einsle O (2007) Proc Natl Acad Sci (USA) 104:3073–3077. doi:10.​1073/​pnas.​0610407104 CrossRef
    64.Ten Brink F, Schink B, Kroneck PMH (2011) J Bacteriol 193:1229–1236CrossRef
    65.Hille R (1996) Chem Rev 96:2757–2816. doi:10.​1021/​cr950061t CrossRef PubMed
    66.Stewart LJ, Bailey S, Bennett B, Charnock JM, Garner CD, McAlpine AS (2000) J Mol Biol 299:593–600. doi:10.​1006/​jmbi.​2000.​3702
    67.Abt DJ (2001) PhD Dissertation, University of Konstanz, Germany
    68.Einsle O, Niessen H, Abt DJ, Seiffert GB, Schink B, Huber R, Messerschmidt A, Kroneck PMH (2005) Acta Cryst F61:299–301. doi:10.​1107/​S174430910500374​X
    69.Dobbek H, Huber R (2002) Met Ions Biol Sys 39:227–26329
    70.Burger E-M, Andrade SLA, Einsle O (2015) Curr Op Struct Biol 35:32–40. doi:10.​1016/​j.​sbi.​2015.​07.​016 CrossRef
    71.Bashford D, Karplus M (1990) Biochemistry 29:10219–11022. doi:10.​1021/​bi00496a010 CrossRef PubMed
    72.Ullmann GM, Knapp E-W (1999) Eur Biophys J 28:533–551. doi:10.​1007/​s002490050236 CrossRef PubMed
    73.Ullmann GM, Elisa Bombarda E (2014) In: Náray-Szabó G (ed) Protein modelling, pp 135–163. Springer, Berlin. doi:10.​1007/​978-3-319-09976-7_​6
    74.Boll M, Einsle O, Ermler U, Kroneck PMH, Ullmann GM (2016) J Mol Microbiol Biotechnol (in press)
    75.Bas DC, Rogers DM, Jensen JH (2008) Proteins 73:765–783. doi:10.​1002/​prot.​22102 CrossRef PubMed
    76.Liao R-Z, Yu J-G, Himo F (2010) Proc Natl Acad Sci (USA) 52:22523–22527. doi:10.​1073/​pnas.​1014060108 CrossRef
    77.Liu Y-F, Liao R-Z, Ding W-J, Yu J-G, Liu R-Z (2011) J Biol Inorg Chem 16:745–752. doi:10.​1007/​s00775-011-0775-x CrossRef PubMed
    78.Liao R-Z, Thiel W (2012) J Chem Theory Comput 8:3793–3803. doi:10.​1021/​ct3000684 CrossRef PubMed
    79.Liao R-Z, Thiel W (2013) J Comput Chem 27:2389–2397. doi:10.​1002/​jcc.​23403
    80.Gilch S, Vogel M, Lorenz MW, Meyer O, Schmidt I (2009) Microbiology 155:279–284. doi:10.​1099/​mic.​0.​023721-0 CrossRef PubMed
    81.Kutscheroff M Ber Bunsenges Phys Chemie 1881:1540–1542
    82.Ponomarev DA, Shevchenko SM (2007) J Chem Ed 84:1725–1726CrossRef
    83.Trost BM (2002) Acc Chem Res 35:695–705. doi:10.​1021/​ar010068z CrossRef PubMed
    84.Hintermann L, Labonne A (2007) Synthesis 8:1121–1150. doi:10.​1055/​s-2007-966002 CrossRef
    85.Majumdar A, Sarkar S (2011) Coord Chem Rev 255:1039–1054. doi:10.​1016/​j.​ccr.​2010.​11.​027 CrossRef
    86.Das SK, Biswas D, Maiti R, Sarkar S (1996) J Am Chem Soc 118:1387–1397. doi:10.​1021/​ja9511580 CrossRef
    87.Yadav J, Das SK, Sarkar S (1997) J Am Chem Soc 119:4315–4316. doi:10.​1021/​ja970134l CrossRef
    88.Ricard L, Weiss R, Newton WE, Chen GJ-J, McDonald JW (1978) J Am Chem Soc 100:1319–1320. doi:10.​1021/​ja00472a062 CrossRef
    89.Templeton JL, Ward BC, Chen GJ-J, McDonald JW, Newton WE (1981) Inorg Chem 20:1248–1253. doi:10.​1021/​ic50218a056 CrossRef
    90.Peschel LM, Bela FJ, Mösch-Zanetti NC (2015) Angew Chem 127:13210–13213. doi:10.​1002/​anie.​201505764 CrossRef
  • 作者单位:Peter M. H. Kroneck (1)

    1. Department of Biology, University of Konstanz, Universitaetsstrasse 10, 78457, Konstanz, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Microbiology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1327
文摘
In living systems, tungsten is exclusively found in microbial enzymes coordinated by the pyranopterin cofactor, with additional metal coordination provided by oxygen and/or sulfur, and/or selenium atoms in diverse arrangements. Prominent examples are formate dehydrogenase, formylmethanofuran dehydrogenase, and aldehyde oxidoreductase all of which catalyze redox reactions. The bacterial enzyme acetylene hydratase (AH) stands out of its class as it catalyzes the conversion of acetylene to acetaldehyde, clearly a non-redox reaction and a reaction distinct from the reduction of acetylene to ethylene by nitrogenase. AH harbors two pyranopterins bound to W, and a [4Fe–4S] cluster. W is coordinated by four dithiolene sulfur atoms, one cysteine sulfur, and one oxygen ligand. AH activity requires a strong reductant suggesting W(IV) as the active oxidation state. Two different types of reaction pathways have been proposed. The 1.26 Å structure reveals a water molecule coordinated to W which could gain a partially positive net charge by the adjacent protonated Asp-13, enabling a direct attack of C2H2. To access the W–Asp site, a substrate channel was evolved distant from where it is found in other members of the DMSOR family. Computational studies of this second shell mechanism led to unrealistically high energy barriers, and alternative pathways were proposed where C2H2 binds directly to W. The architecture of the catalytic cavity, the specificity for C2H2 and the results from site-directed mutagenesis do not support this first shell mechanism. More investigations including structural information on the binding of C2H2 are needed to present a conclusive answer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700