Development of a coupled discrete element (DEM)–smoothed particle hydrodynamics (SPH) simulation method for polyhedral particles
详细信息    查看全文
  • 作者:Benjamin Nassauer ; Thomas Liedke ; Meinhard Kuna
  • 关键词:DEM ; SPH ; Fluid particle coupling ; Liquid ; solid flow ; Polyhedral particles
  • 刊名:Computational Particle Mechanics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:3
  • 期:1
  • 页码:95-106
  • 全文大小:1,585 KB
  • 参考文献:1.Adami S, Hu XY, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231(21):7057–7075CrossRef MathSciNet
    2.Bierwisch C, Kübler R, Kleer G, Moseler M (2011) Modelling of contact regimes in wire sawing with dissipative particle dynamics. Philos Trans R Soc A 369(1945):2422–2430CrossRef
    3.Boon CW, Houlsby GT, Utili S (2012) A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method. Comput Geotech 44:73–82CrossRef
    4.Cleary PW, Monaghan JJ (1999) Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 148(1):227–264CrossRef MathSciNet MATH
    5.Cleary PW, Morrison RD (2012) Prediction of 3d slurry flow within the grinding chamber and discharge from a pilot scale sag mill. Miner Eng 39:184–195CrossRef
    6.Cundall PA (1988) Formulation of a three-dimensional distinct element model–part i. a scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr 25(3):107–116CrossRef
    7.Cundall PA, Strack OD (1979) Discrete numerical model for granular assemblies. Int J Rock Mech Min Sci Geomech Abstr 16(4):47–65
    8.Galindo-Torres SA (2013) A coupled discrete element lattice boltzmann method for the simulation of fluid-solid interaction with particles of general shapes. Comput Methods Appl Mech Eng 265:107–119CrossRef MathSciNet MATH
    9.Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389CrossRef MATH
    10.Grof Z, Cook J, Lawrence CJ, Štěpánek F (2009) The interaction between small clusters of cohesive particles and laminar flow: coupled dem/cfd approach. J Petrol Sci Eng 66(1–2):24–32CrossRef
    11.Höfler C (2013) Entwicklung eines Smoothed Particle Hydrodynamics (SPH) Codes zur numerischen Vorhersage des Primärzerfalls an Brennstoffeinspritzdüsen. PhD thesis, Karlsruher Institut für Technologie
    12.Huang YJ, Nydal OJ (2012) Coupling of discrete-element method and smoothed particle hydrodynamics for liquid-solid flows. Theor Appl Mech Lett 2(1):012002CrossRef MathSciNet
    13.Kloss C, Goniva C, Hager A (2012) Models, algorithms and validation for opensource dem and cfd-dem. Prog Comput Fluid Dyn Int J 12(2/3):140–152CrossRef MathSciNet
    14.Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J Comput Phys 109(1):67–75CrossRef MATH
    15.Lu G, Third JR, Müller CR (2015) Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem Eng Sci 127:425–465CrossRef
    16.Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12):1013–1024CrossRef
    17.Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30(1):543–574CrossRef
    18.Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406CrossRef MATH
    19.Monaghan JJ (2000) Sph without a tensile instability. J Comput Phys 159(2):290–311CrossRef MATH
    20.Monaghan JJ, Kajtar JB (2009) SPH particle boundary forces for arbitrary boundaries. Comput Phys Commun 180(10):1811–1820CrossRef MathSciNet MATH
    21.Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226CrossRef MATH
    22.Müller M, Schirm S, Teschner M, Heidelberger B, Gross M (2004) Interaction of fluids with deformable solids. Comput Anim Virtual Worlds 15(3–4):159–171CrossRef
    23.Nassauer B, Kuna M (2013) Contact forces of polyhedral particles in discrete element method. Granul Matter 15(3):349–355CrossRef
    24.Nassauer B, Liedke T, Kuna M (2013) Polyhedral particles for the discrete element method: geometry representation, contact detection and particle generation. Granul Matter 15(1):85–93CrossRef
    25.Nassauer B (2015) Entwicklung einer 3D Diskrete Elemente Methode mit polyederförmigen Partikeln zur Simulation der fluidgekoppelten Prozesse beim Drahtsägen. PhD thesis, TU Bergakademie Freiberg, Freiberg
    26.De Pellegrin DV, Stachowiak GW (2005) Simulation of three-dimensional abrasive particles. Wear 258(1–4):208–216 Second international conference on erosive and abrasive wear
    27.Potapov AV, Hunt ML, Campbell CS (2001) Liquid-solid flows using smoothed particle hydrodynamics and the discrete element method. Powder Technol 116(2–3):204–213CrossRef
    28.Qiu L-C (2013) Numerical modeling of liquid-particle flows by combining SPH and DEM. Ind Eng Chem Res 52(33):11313–11318CrossRef
    29.Robinson M, Ramaioli M, Luding S (2014) Fluid-particle flow simulations using two-way-coupled mesoscale SPH-DEM and validation. Int J Multiph Flow 59:121–134CrossRef
    30.Rozmanov D, Kusalik PG (2010) Robust rotational-velocity-verlet integration methods. Phys Rev 81(5):056706MathSciNet
    31.Shao S, Lo EYM (2003) Incompressible sph method for simulating newtonian and non-newtonian flows with a free surface. Adv Water Resour 26(7):787–800CrossRef
    32.Takeda H, Miyama SM, Sekiya M (1994) Numerical simulation of viscous flow by smoothed particle hydrodynamics. Prog Theoret Phys 92(5):939–960CrossRef
    33.Tao H, Jin B, Zhong W, Wang X, Ren B, Zhang Y, Xiao R (2010) Discrete element method modeling of non-spherical granular flow in rectangular hopper. Chem Eng Process 49(2):151–158CrossRef
    34.Valizadeh Alireza, Monaghan Joseph J (2015) A study of solid wall models for weakly compressible SPH. J Comput Phys 300:5–19CrossRef MathSciNet
    35.van Zuijlen AH, Bijl H (2005) Implicit and explicit higher order time integration schemes for structural dynamics and fluid-structure interaction computations. Comput Struct 83(2–3):93–105 Advances in Analysis of Fluid Structure InteractionAdvances in Analysis of Fluid Structure Interaction
    36.Zhu YI, Fox PJ, Morris JP (1999) A pore-scale numerical model for flow through porous media. Int J Numer Anal Meth Geomech 23(9):881–904CrossRef MATH
  • 作者单位:Benjamin Nassauer (1)
    Thomas Liedke (1)
    Meinhard Kuna (1)

    1. Institut für Mechanik und Fluiddynamik, TU Bergakademie Freiberg, Lampadiusstr. 4, 09596, Freiberg, Germany
  • 刊物类别:Theoretical and Applied Mechanics; Computational Science and Engineering; Classical Continuum Physic
  • 刊物主题:Theoretical and Applied Mechanics; Computational Science and Engineering; Classical Continuum Physics;
  • 出版者:Springer International Publishing
  • ISSN:2196-4386
文摘
In the present paper, the direct coupling of a discrete element method (DEM) with polyhedral particles and smoothed particle hydrodynamics (SPH) is presented. The two simulation techniques are fully coupled in both ways through interaction forces between the solid DEM particles and the fluid SPH particles. Thus this simulation method provides the possibility to simulate the individual movement of polyhedral, sharp-edged particles as well as the flow field around these particles in fluid-saturated granular matter which occurs in many technical processes e.g. wire sawing, grinding or lapping. The coupled method is exemplified and validated by the simulation of a particle in a shear flow, which shows good agreement with analytical solutions. Keywords DEM SPH Fluid particle coupling Liquid-solid flow Polyhedral particles

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700