Vulcanization, centrifugation, water-washing, and polymeric covering processes to optimize natural rubber membranes applied to microfluidic devices
详细信息    查看全文
  • 作者:Flávio C. Cabrera ; Guilherme Dognani ; Fabricio L. Faita…
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:51
  • 期:6
  • 页码:3003-3012
  • 全文大小:1,233 KB
  • 参考文献:1.Scherillo G, Lavorgna M, Buonocore GG, Zhan YH, Xia HS, Mensitieri G, Ambrosio L (2014) Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites. ACS Appl Mater Interfaces 6:2230–2234CrossRef
    2.Lin T, Ma S, Lu Y, Guo B (2014) New design of shape memory polymers based on natural rubber crosslinked via oxa-Michael reaction. ACS Appl Mater Interfaces 6:5695–5703CrossRef
    3.Quitmann D, Gushterov N, Sadowski G, Katzenberg F, Tiller JC (2014) Environmental memory of polymer networks under stress. Adv Mater 26:3441–3444CrossRef
    4.Quitmann D, Gushterov N, Sadowski G, Katzenberg F, Tiller JC (2013) Solvent-sensitive reversible stress-response of shape memory natural rubber. Appl Mater Interfaces 5:3504–3507CrossRef
    5.Qiu T, Zeng Q, Ao N (2014) Preparation and characterization of chlorinated nature rubber (CNR) based polymeric quaternary phosphonium salt bactericide. Mater Lett 122:13–16CrossRef
    6.Zhang Y, Xue X, Zhang Z, Liu Y, Li G (2014) Morphology and antibacterial properties of natural rubber composites based on biosynthesized nanosilver. J Appl Polym Sci. doi:10.​1002/​APP.​40746
    7.Cottinet P-J, Guyomar D, Galineau J, Sebald G (2012) Electro-thermo-elastomers for artificial muscles. Sens Actuators A 180:105–112CrossRef
    8.Flory PJ (1944) Network structure and the elastic properties of vulcanized rubber. Chem Rev 35:51–75. doi:10.​1021/​cr60110a002 CrossRef
    9.Hasan A, Rochmadi SH, Honggokusumo S (2013) Vulcanization kinetics of natural rubber based on free sulfur determination. Indones J Chem 13:21–27
    10.Perrella FW, Gaspari AA (2002) Natural rubber latex protein reduction with an emphasis on enzyme treatment. Methods 27:77–86CrossRef
    11.Meade BJ, Weissman DN, Beezhold DH (2002) Latex allergy: past and present. Int Immunopharmacol 2:225–238CrossRef
    12.Knop KJ, Bridts CH, Verweij MM, Hagendores MM, de Clerck LS, Stevens WJ, Ebo DG (2010) Component-resolved allergy diagnosis by microarray: potential, pitfalls, and prospects. Adv Clin Chem 50:87–101CrossRef
    13.Cabrera FC, Souza JCP, Job AE, Crespilho FN (2014) Natural-rubber-based flexible microfluidic device. RSC Adv 4:35467–35475CrossRef
    14.Cabrera FC, Melo AFAA, Souza JCP, Job AE, Crespilho FN (2015) A flexible lab-on-a-chip for the synthesis and magnetic separation of magnetite decorated with gold nanoparticles. Lab Chip 15:1835–1841CrossRef
    15.Vasdekis AE, Wilkins MJ, Grate JW, Kelly RT, Konopka AE, Xantheas SS, Chang T-M (2014) Solvent immersion imprint lithography. Lab Chip 14:2072–2080CrossRef
    16.Ahn CH, Choi J-W, Beaucage G, Nevin JH, Lee J-B, Puntambekar A, Lee JY (2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc IEEE 92:154–173CrossRef
    17.Sakamoto H, Hatsuda R, Miyamura K, Sugiyama S (2012) Plasma separation PMMA device driven by capillary force controlling surface wettabilitys. Micro Nano Lett 7:64–67CrossRef
    18.Chhina SK, Perez CF, Parameswaran M (2012) Microfluidic system to detect DNA amplicons using agglutination technique. J Micromech Microeng 22:1–8CrossRef
    19.Moriuchi T, Sumida S, Furuya A, Morishima K, Furukawa Y (2009) Direct photosynthetic/metabolic biofuel cell for mobile use. Int J Precis Eng Manuf 10:75–78CrossRef
    20.Song W, Vasdekis AE, Psaltis D (2012) Elastomer based tunable optofluidic devices. Lab Chip 12:3590–3597CrossRef
    21.Alvankarian J, Majlis BY (2012) A new UV-curing elastomeric substrate for rapid prototyping of microfluidic devices. J Micromech Microeng 22:1–15CrossRef
    22.Foudeh AM, Didar TF, Veresa T, Tabrizian M (2012) Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab Chip 12:3249–3266CrossRef
    23.Liu F, Nordin AN, Li F, Voiculescu I (2014) A lab-on-chip cell-based biosensor for label-free sensing of water toxicants. Lab Chip 14:1270–1280CrossRef
    24.Chiriacó MS, Primiceri E, D´Amone E, Ionescu RE, Rinaldi R, Maruccio G (2011) EIS microfluidic chips for flow immunoassay and ultrasensitive cholera toxin detection. Lab Chip 11:658–663CrossRef
    25.Kim DN, Lee Y, Koh W-G (2009) Fabrication of microfluidic devices incorporating bead-based reaction and microarray-based detection system for enzymatic assay. Sensors and Actuators B 137:305–312CrossRef
    26.Zheng W, Jiang B, Wang D, Zhang W, Wang Z, Jiang X (2012) A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip 12:3441–3450CrossRef
    27.Faita FL, Dotto MER, França LG, Cabrera FC, Job AE, Bechtold IH (2014) Characterization of natural rubber membranes using scaling laws analysis. Eur Polym J 50:249–254CrossRef
    28.ASTM D 412 (2013) Test methods for vulcanized rubber and thermoplastic elastomers–tension. ASTM international
    29.Mrué F, Netto JC, Ceneviva R, Lachat JJ, Thomazini JA, Tambelini H (2004) Evaluation of the biocompatibility of a new biomembrane. Mater Res 7:277–283CrossRef
    30.Ferreira M, Mendonça RJ, Coutinho-Netto J, Mulato M (2009) Angiogenic properties of natural rubber latex biomembranes and the serum fraction of hevea brasiliensis. Braz J Phys 39:564–569CrossRef
    31.Kubo M, Li X, Kim C, Hashimoto M, Wiley BJ, Ham D, Whitesides GM (2010) Stretchable microfluidic radiofrequency antennas. Adv Mater 22:2749–2752CrossRef
    32.Johnston ID, McCluskey DK, Tan CKL, Tracey MC (2014) Mechanical characterization of bulk sylgard 184 for microfluidics and microengineering. J Micromech Microeng 24:1–7CrossRef
    33.Leela E, Muhamed AP (2006) Assessment of biodeterioration of rubber wood exposed to field conditions. Int Biodeterior Biodegradation 57:31–36CrossRef
    34.Blackley DC (1997) Polymers latices, vol 2. Chapman & Hall, GlasgowCrossRef
    35.Sethuraj MR, Mathew NM (1992) Natural rubber. biology, cultivation and tehchnology. Elsevier Science, Netherlands
    36.Say HT, Nguyen N-T, Chua YC, Kang TG (2010) Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4:032204-1–032204-8
    37.Hwee EA (2014) (Chapter 3) non-rubbers and abnormal groups in natural rubber. In: Thomas S, Chan CH, Pothen LA, Rajisha KR, Hanna JM (eds) Natural rubber materials, vol. 1: blends and IPNs, vol 7., RSC polymer chemistry seriesRSC Publishing, Cambridge
    38.Li S-D, Yu H-P, Zhu C-S, Li P-S (2000) Study on thermal degradation of sol and gel of natural rubber. J Appl Polym Sci 75:1339–1344CrossRef
    39.Agostini DLS, Constantino CJL, Job AE (2008) Thermal degradation of both latex and latex cast films forming membranes combined TG/FTIR investigation. J Therm Anal Calorim 91:703–707CrossRef
    40.Yeang HY, Sunderasan E, Ghazali HM (1995) Latex allergy studies: extraction of natural rubber latex proteins with reference to film thickness, latex DRC and protein migration behaviour. J Nat Rubber Res 10:46–62
    41.Seager SL, Slabaugh MR (1999) Organic and biochemistry for today, 4th edn. Brooks/Cole - Thomson Learning, Belmont, USA
    42.De Paoli, M.A. Degradação e Estabilização de Polímeros, Ed 2. João Carlos de Andrade (editor). 2008
    43.Amnuaypornsri S, Sakdapipanich J, Tanaka Y (2010) Highly purified natural rubber by saponificaion of latex: analysis of green and cured properties. J Appl Polym Sci 118:3524–3531CrossRef
    44.Nallasamy P, Mohan S (2004) Vibrational Spectra of Cis-1,4-Polyisoprene. The Arab J Sci Eng 29:17–26
    45.Healey AM, Hendra PJ, West YD (1996) A fourier-transform Raman study of the strain-induced crystallization and cold crystallization of natural rubber. Polymer 37:4009–4024CrossRef
    46.Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39:549–559CrossRef
  • 作者单位:Flávio C. Cabrera (1)
    Guilherme Dognani (1)
    Fabricio L. Faita (5)
    Renivaldo J. dos Santos (4)
    Deuber L. S. Agostini (1)
    Ivan H. Bechtold (2)
    Frank N. Crespilho (3)
    Aldo E. Job (1)

    1. Departamento de Física, Química e Biologia, Faculdade de Ciências e Tecnologia FCT/UNESP, Presidente Prudente, SP, 19060-900, Brazil
    5. Centre of Physics, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
    4. Universidade Estadual Paulista, Campus Experimental de Rosana, SP, Brazil
    2. Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
    3. Instituto de Química, Universidade de São Paulo, São Carlos, SP, Brazil
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Natural rubber microfluidic devices are based on the replication of microchannels and chambers through the casting of latex and combine the flexibility and transparency of the polymeric platform. Natural rubber is a proposed alternative material to prepare microfluidic devices, owing to the advantages of flexibility, eco-friendliness, and lower cost compared to other commonly used polymeric microfluidic materials. However, the challenges for the use of natural rubber are the leaching of compounds when it is in contact with fluids, the low stretching resistance, and the decreases of transparency rate in terms of the water absorption rate. To overcome these issues, we report the evaluation of the essential mechanical, optical, and structural properties of natural rubber for centrifuged and pre-vulcanized rubber membranes, as well as the polymeric coating over the membrane surfaces. We propose the centrifugation process for decreasing the leach composition of the natural rubber platform and vulcanization to improve the mechanical resistance of the polymeric membrane devices. The polymeric coating prevents the leaching of compounds from natural rubber membranes and water absorption without significant reduction in transparency or increase in the hydrophobicity of the surface. Once the centrifuging, vulcanization, and coating processes improve the rubber properties, this polymer will become an alternative flexible and low-cost material for microfluidic technology. Electronic supplementary materialThe online version of this article (doi:10.​1007/​s10853-015-9611-y) contains supplementary material, which is available to authorized users.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700