Signatures of tidal interference patterns in the South China Sea
详细信息    查看全文
  • 作者:Alex Warn-Varnas ; Dong S. Ko ; Avijit Gangopadhyay
  • 关键词:Tidal interference pattern ; South China Sea ; Internal tide ; Luzon Strait Nowcast/Forecast System (LZSNFS) ; Linear knife ; edge model
  • 刊名:Journal of Oceanography
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:71
  • 期:3
  • 页码:251-262
  • 全文大小:3,090 KB
  • 参考文献:Buijsman MC, McWilliams JC, Jackson CR (2010) East-west asymmetry in nonlinear internal waves from Luzon Strait. J Geophys Res 115:C10057. doi:10.鈥?029/鈥?009JC006004 View Article
    Buijsman M, Legg S, Klymak J (2012) Double ridge internal tide interference and its effect on dissipation in Luzon Strait. J Phys Oceanogr 42:1337鈥?356View Article
    Chao S-Y, Ko DS, Lien R-C, Shaw P-T (2007) Assessing the west ridge of Luzon Strait as an internal wave mediator. J Oceanogr 63:897鈥?11. doi:10.鈥?007/鈥媠10872-007-0076-8 View Article
    Chen Y-J, Ko DS, Shaw P-T (2013) The generation and propagation of internal solitary waves in the South China Sea. J Geophys Res 118:6578鈥?589. doi:10.鈥?002/鈥?013JC009319 View Article
    Echeverri P, Yokossi T, Balmforth NJ, Peacook T (2011) Tidally generated internal-wave attractors between double ridges. J Fluid Mech 669:354鈥?74View Article
    Egbert G, Erofeeva S (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech 19:183鈥?04View Article
    Farmer D, Li O, Park J-H (2009) Internal wave observation in South China Sea: the role of rotation and nonlinearity. Atmos-Ocean 47:267鈥?80. doi:10.鈥?137/鈥婳C313.鈥?009 View Article
    Farmer DM, Alford MH, Lien R-C, Yang Y-H, Chang M-H, Li Q (2011) Stages in the life of an internal wave. Oceanography 24:64鈥?7View Article
    Flather RA, Proctor R (1983) Prediction of North Sea storm surges using numerical models: recent developments in the UK. In: Sundermann J, Lenz W (eds) North Sea dynamics. Springer, New York, pp 299鈥?17View Article
    Hsu M, Liu A (2000) Nonlinear internal waves in South China Sea. Can J Remote Sensing 26:72鈥?1View Article
    Jackson CR (2009) An empirical model for estimating the geographic location of nonlinear internal solitary waves. J Atmos Oceanic Technol 26:2243鈥?255. doi:10.鈥?175/鈥?009JTECHO6381 View Article
    Jackson CR (2014) Separation of SAR observations into A and B waves. Private communication
    Ko DS, Wang D-P (2014) Intra-Americas Sea nowcast/Forecast System Ocean reanalysis to support improvement of oil-spill risk analysis in the gulf of Mexico by multi-model approach, BOEM 2014-1003. Bureau of Ocean Energy Management, Herndon,聽VA, pp 55
    Ko DS, Martin PJ, Rowley CD, Preller RH (2008) A real-time coastal ocean prediction experiment for MREA04. J Mar Syst 69:17鈥?8. doi:10.鈥?016/鈥媕.鈥媕marsys.鈥?007.鈥?2.鈥?22 View Article
    Ko DS, Chao S-Y, Huang P, Lin SF (2009) Anomalous upwelling in Nan Wan: July 2008. Terr Atmos Ocean Sci 20:839鈥?52. doi:10.鈥?319/鈥婽AO.鈥?008.鈥?1.鈥?5.鈥?1(Oc) View Article
    Ko DS, Chao S-Y, Wu C-C, Lin I-I (2014) Impacts of Typhoon Megi (2010) on the South China Sea. J Geophys Res Oceans 119:4474鈥?489. doi:10.鈥?002/鈥?013JC009785 View Article
    Laurant LC, Stringer S, Garret C, Perrault-Joncas D (2003) The generation of internal tides at abrupt topography. Deep Sea Res I 50:987鈥?003View Article
    Lee I-H, Ko DS, Wang Y-H, Centurioni L, Wang D-P (2013) The mesoscale eddies and Kuroshio transport in the western North Pacific east of Taiwan from 8-year (2003鈥?010) model reanalysis. Ocean Dyn 63:1027鈥?040. doi:10.鈥?007/鈥媠10236-013-0643-z View Article
    Li Q (2014) Numerical assessment of factors affecting nonlinear internal waves in South China Sea. Prog Oceanogr 121:24鈥?3View Article
    Li Q, Farmer DM (2011) The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. J Phys Oceanogr 41:1345鈥?363View Article
    Liu A, Ramp S, Zhao Y, Tang Y (2004) A case study of internal solitary wave propagation during ASIAEX 2001. IEEE J Ocean Eng 29:1144鈥?156View Article
    Ma BB, Lien R-C, Ko DS (2013) The variability of internal tide in the northern South China Sea. J Oceanogr 69:619鈥?30. doi:10.鈥?007/鈥媠10872-013-0198-0 View Article
    Martin PJ (2000) A description of the Navy Coastal Ocean Model Version 1.0, NRL. Rep. NRL/FR/7322-00-9962. Nav Res Lab Stennis Space Cent., MS, pp 42
    Niwa Y, Hibiya T (2004) Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J Geophys Res 109:C04027. doi:10.鈥?029/鈥?003JC001923
    Qian H, Shaw P-T, Ko DS (2010) Generation of internal waves by barotropic tidal flow over a steep ridge. Deep Sea Res I 57:1521鈥?531. doi:10.鈥?016/鈥媕.鈥媎sr.鈥?010.鈥?9.鈥?01 View Article
    Rainville L, Johnston S, Carter TM, Merrifield GS, Pinkel MA, Worcaster PF, Dushhaw BD (2010) Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. J Phys Oceanogr 41:311鈥?25. doi:10.鈥?175/鈥?009JPO4256 View Article
    Ramp S, Tang T, Duda T, Lynch J, Liu A, Chiu C-S, Bahr F, Kim H-R, Yang Y-J (2004) Internal solitons in the Northeastern South China Sea Part 1: sources and deep water propagation. IEEE J Ocean Eng 29:1137鈥?181
    Ramp S, Yang Y, Bahr F (2010) Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlin Proc Geophys 17:481鈥?98. doi:10.鈥?.鈥?194/鈥媙pg-17-481-2011 View Article
    Rhodes RC, Hurlburt HE, Wallcraft AJ, Barron CN, Martin PJ, Smedstad OM, Cross S, Metzger EJ, Shriver J, Kara A, Ko DS (2002) Navy real-time global modeling system. Oceanography 15:29鈥?3. doi:10.鈥?670/鈥媜ceanog.鈥?002.鈥?4 View Article
    Simmons H, Chang M-H, Chang Y-T, Chao S-Y, Fringer O, Jackson CR, Ko DS (2011) Modeling and prediction of internal waves in the South China Sea. Oceanography 24:88鈥?9. doi:10.鈥?670/鈥媜ceanog.鈥?011.鈥?7 View Article
    Warn-Varnas A, Hawkins J, Lamb KG, Piacsek S, Chin-Bing S, King D, Burgos G (2010) Solitary wave generation dynamics at Luzon Strait. Ocean Model 31:9鈥?7. doi:10.鈥?016/鈥媕.鈥媜cemod.鈥?009.鈥?8.鈥?02 View Article
    Zhang Z, Fringer OB, Ramp S (2011) Three-dimensional nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. J Geophys Res 116:C05022. doi:10.鈥?029/鈥?010JC006424
    Zheng Q, Susanto RD, Ho C-R, Song YT, Xu Q (2007) Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea. J Geophys Res 112:C03021. doi:10.鈥?029/鈥?006JC003551
    Zheng Q, Song YT, Lin H, Hu X, Meng J, Wang D (2008) On generation source sites of internal waves in the Luzon Strait. Acta Oceanol Sin 27:38鈥?0
  • 作者单位:Alex Warn-Varnas (1) (2)
    Dong S. Ko (3)
    Avijit Gangopadhyay (2)

    1. Jacobs Technologies Inc., Stennis Space Center, MS, 39529, USA
    2. Department of Estuarine and Ocean Sciences, University of Massachusetts Dartmouth, Dartmouth, MA, 02747, USA
    3. Naval Research Laboratory, Stennis Space Center, MS, 39529, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Oceanography
    Hydrobiology
  • 出版者:Springer Netherlands
  • ISSN:1573-868X
文摘
The formation of arc-type structures in the surface elevation and temperature fields due to internal tidal (IT) waves is studied in the region of the South China Sea (SCS) and Luzon Strait. It is demonstrated that these arc-type structures in the surface elevation and temperature at depth result from the merging of IT waves. Predictions of internal baroclinic tides are conducted with a nonlinear hydrostatic model, the Luzon Strait Nowcast/Forecast System, forced with tides, realistic surface forcing and stratification (Appendix 1). It is shown that IT waves generated by the undersea ridges near the Batan and Babuyan Islands in the Luzon Strait propagate westward and merge into arcs in the SCS. The superposition of IT waves is also investigated with a linear knife-edge model (Appendix 2). M2 and K1 tidal waves are considered. It is demonstrated that K1, M2 tidal waves from the Babuyan Islands combine with waves from the Batan Islands to form arc signatures in sea surface elevation and warm spots in the South China Sea. Possible modulation effects of K1 waves on M2 waves are shown. Dynamics of the nonlinear hydrostatic model shape the arc segments differently from the linear model. Arc lengths increase from the sources in nonlinear and linear models. The model-predicted merged IT waves are compared with SAR images.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700