CO2 capture by Mg–Al and Zn–Al hydrotalcite-like compounds
详细信息    查看全文
  • 作者:Thiago M. Rossi ; Juacyara C. Campos ; Mariana M. V. M. Souza
  • 关键词:Hydrotalcite ; like compounds ; Basic sites ; Adsorption ; Carbon dioxide
  • 刊名:Adsorption
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:22
  • 期:2
  • 页码:151-158
  • 全文大小:759 KB
  • 参考文献:Abelló, S., Medina, F., Tichit, D., Pérez-Ramírez, J., Groen, J.C., Sueiras, J.E., Salagre, P., Cesteros, Y.: Aldol condensations over reconstructed Mg–Al hydrotalcites: structure–activity relationships related to the rehydration method. Chem. A. Eur. J. 11, 728–739 (2005)CrossRef
    Béres, A., Pálinkó, I., Kiricsi, I., Nagy, J.B., Kiyozumi, Y., Mizukami, F.: Layered double hydroxides and their pillared derivatives – materials for solid base catalysis; synthesis and characterization. Appl. Catal. A 182, 237–247 (1999)CrossRef
    Bolognini, M., Cavani, F., Scagliarini, D., Flego, C., Perego, C., Saba, M.: Heterogeneous basic catalysts as alternatives to homogeneous catalysts: reactivity of Mg/Al mixed oxides in the alkylation of m-cresol with methanol. Catal. Today 75, 103–111 (2002)CrossRef
    Cavani, F., Trifiro, F., Vaccari, A.: Hydrotalcite-type anionic clays: preparation, properties and applications. Catal. Today 11, 173–301 (1991)CrossRef
    Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796–854 (2009)CrossRef
    Corma, A., Iborra, S., Primo, J., Rey, F.: One-step synthesis of citronitril on hydrotalcite derived base catalysts. Appl. Catal. A 114, 215–225 (1994)CrossRef
    Corma, A., Hamid, S.B.A., Iborra, S., Velty, A.: Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides. J. Catal. 234, 340–347 (2005)CrossRef
    D’Alessandro, D.M., Smit, B., Long, J.R.: Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. 49, 6058–6082 (2010)CrossRef
    Di Cosimo, J.I., Díez, V.K., Xu, M., Iglesia, E., Apesteguia, C.R.: Structure and surface and catalytic properties of Mg-Al basic oxides. J. Catal. 178, 499–510 (1998)CrossRef
    Ding, Y., Alpay, E.: Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chem. Eng. Sci. 55, 3461–3474 (2000)CrossRef
    Ding, Y., Alpay, E.: High temperature recovery of CO2 from flue gases using hydrotalcite adsorbent. Trans. IChemE 79, 45–51 (2001)CrossRef
    Du, H., Ebner, A.D., Ritter, J.A.: Temperature dependence of the nonequilibrium kinetic model that describes the adsorption and desorption behavior of CO2 in K-promoted HTlc. Ind. Eng. Chem. Res. 49, 3328–3336 (2010)CrossRef
    Hutson, N.D., Speakman, S.A., Payzant, E.A.: Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite. Chem. Mater. 16, 4135–4143 (2004)CrossRef
    Hutson, N.D., Attwood, B.C.: High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption 14, 781–789 (2008)CrossRef
    International Energy Agency: CO2 emissions from fuel combustion highlights, www.​iea.​org . Accessed Sept 2014
    Kim, Y., Yang, W., Liu, P.K.T., Sahimi, M., Tsotsis, T.T.: Thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide: sorption reversibility aspects. Ind. Eng. Chem. Res. 43, 4559–4570 (2004)CrossRef
    Kustrowski, P., Chmielarz, L., Bozek, E., Sawalha, M., Roessner, F.: Acidity and basicity of hydrotalcite derived mixed Mg–Al oxides studied by test reaction of MBOH conversion and temperature programmed desorption of NH3 and CO2. Mater. Res. Bull. 39, 263–281 (2004)CrossRef
    Kustrowski, P., Sułkowska, D., Chmielarz, L., Rafalska-Łasocha, A., Dudek, B., Dziembaj, R.: Influence of thermal treatment conditions on the activity of hydrotalcite-derived Mg–Al oxides in the aldol condensation of acetone. Microp. Mesop. Mater. 78, 11–22 (2005)CrossRef
    León, M., Díaz, E., Bennici, S., Vega, A., Ordóñez, S., Auroux, A.: Adsorption of CO2 on hydrotalcite-derived mixed oxides: sorption mechanisms and consequences for adsorption irreversibility. Ind. Eng. Chem. Res. 49, 3663–3671 (2010)CrossRef
    Liu, Q., Wang, B., Wang, C., Tian, Z., Qu, W., Ma, H., Xu, R.: Basicities and transesterification activities of Zn–Al hydrotalcites-derived solid bases. Green Chem. 16, 2604–2613 (2014)CrossRef
    Oliveira, E.L.G., Grande, C.A., Rodrigues, A.E.: CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures. Sep. Purif. Technol. 62, 137–147 (2008)CrossRef
    Ram Reddy, M.K., Xu, Z.P., Lu, G.Q., Costa, J.C.D.: Layered double hydroxides for CO2 capture: structure evolution and regeneration. Ind. Eng. Chem. Res. 45, 7504–7509 (2006)CrossRef
    Rodrigues, A.C.C.: Influence of the composition on the electronegativity and on the oxygen charge distribution in a binary hydrotalcite-like by modified Sanderson method. J. Math. Chem. 37, 347–351 (2005)CrossRef
    Sampieri, A., Lima, E.: On the acid-base properties of microwave irradiated hydrotalcite-like compounds containing Zn2+ and Mn2+. Langmuir 25, 3634–3639 (2009)CrossRef
    Sharma, U., Tyagi, B., Jasra, R.V.: Synthesis and characterization of Mg-Al-CO3 layered double hydroxide for CO2 adsorption. Ind. Eng. Chem. Res. 47, 9588–9595 (2008)CrossRef
    Silva, C.C.C.M., Ribeiro, N.F.P., Souza, M.M.V.M., Aranda, D.A.G.: Biodiesel production from soybean oil and methanol using hydrotalcites as catalyst. Fuel Process. Technol. 91, 205–210 (2010)CrossRef
    Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid system with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)CrossRef
    Torres-Rodríguez, D.A., Lima, E., Valente, J.S., Pfeiffer, H.: CO2 capture at low temperatures (30–80°C) and in the presence of water vapor over a thermally activated Mg-Al layered. J. Phys. Chem. A 115, 12243–12250 (2011)CrossRef
    Tsuji, M., Mao, G., Yoshida, T., Tamaura, Y.: Hydrotalcites with an extended Al3+-substitution: synthesis, simultaneous TG-DTA-MS study, and their CO2 adsorption behaviors. J. Mater. Res. 8, 1137–1142 (1993)CrossRef
    Wang, Q., Luo, J., Zhong, Z., Borgna, A.: CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4, 42–55 (2011)CrossRef
    Wang, Q., Tay, H.H., Guo, Z., Chen, L., Liu, Y., Chang, J., Zhong, Z., Luo, J., Borgna, A.: Morphology and composition controllable synthesis of Mg–Al–CO3 hydrotalcites by tuning the synthesis pH and the CO2 capture capacity. Appl. Clay Sci. 55, 18–26 (2012)CrossRef
    Yang, W., Kim, Y., Liu, P.K.T., Sahimi, M., Tsotsis, T.T.: A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide. Chem. Eng. Sci. 57, 2945–2953 (2002)CrossRef
    Yong, Z., Mata, V., Rodrigues, A.E.: Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTLCs) at high temperatures. Ind. Eng. Chem. Res. 40, 204–209 (2001)CrossRef
    Yong, Z., Rodrigues, A.E.: Hydrotalcite-like compounds as adsorbents for carbon dioxide. Energy Convers. Manag. 43, 1865–1876 (2002)CrossRef
  • 作者单位:Thiago M. Rossi (1)
    Juacyara C. Campos (1)
    Mariana M. V. M. Souza (1)

    1. Escola de Química, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Tecnologia, Bloco E, Sala 206, Rio de Janeiro, RJ, CEP 21941-909, Brazil
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Surfaces and Interfaces and Thin Films
    Industrial Chemistry and Chemical Engineering
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Netherlands
  • ISSN:1572-8757
文摘
Hydrotalcite-like compounds (HTC) are distinguished by their properties for CO2 capture, like high surface area, basic sites, thermal stability and good adsorption/desorption efficiency. Mg–Al e Zn–Al HTCs with Al3+ molar ratios x = 0.20, 0.28 and 0.33 were synthesized by coprecipitation, and subsequently calcined at 400 °C. For both HTCs, X-ray diffraction patterns have attested the formation of mixed oxides through calcination. The amount of basic sites, measured by temperature-programmed desorption of CO2, decreases as x increases. The CO2 adsorption was performed in a thermogravimetric balance using an adsorption temperature of 50 °C. Mg–Al and Zn–Al samples with x = 0.33 molar composition presented the highest CO2 adsorption, 0.91 and 0.21 mmol g−1, respectively. The Langmuir isotherm fitted well to the experimental data. It was also found that increasing the number of adsorption/desorption cycles the CO2 adsorption decreases, which is associated with the irreversible chemisorption. Keywords Hydrotalcite-like compounds Basic sites Adsorption Carbon dioxide

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700