Effect of Mg/Al Ratio on Catalytic Behavior of Fischer–Tropsch Cobalt-Based Catalysts Obtained from Hydrotalcites Precursors
详细信息    查看全文
  • 作者:Angélica Forgionny ; J. L. G. Fierro ; Fanor Mondragón ; Andrés Moreno
  • 关键词:Co ; based catalyst ; Co ; precipitation method ; Hydrotalcite ; Mixed oxide ; Fischer–Tropsch synthesis
  • 刊名:Topics in Catalysis
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:59
  • 期:2-4
  • 页码:230-240
  • 全文大小:963 KB
  • 参考文献:1.Zhang Q, Deng W, Wang Y (2013) Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis. J Energy Chem 22:27–38. doi:10.​1016/​S2095-4956(13)60003-0 CrossRef
    2.Van de Loosdrecht J, Botes F, Ciobica I et al (2013) Fischer–Tropsch synthesis : catalysts and chemistry. Compr Inorg Chem II:525–557. doi:10.​1016/​B978-0-08-097774-4.​00729-4 CrossRef
    3.Schulz H (1999) Short history and present trends of Fischer–Tropsch synthesis. Appl Catal A 186:3–12. doi:10.​1016/​S0926-860X(99)00160-X CrossRef
    4.Van Der Laan G, Beenackers A (1999) Kinetics and selectivity of the Fischer-Tropsch synthesis: a literature review. Catal Rev 41:255–318. doi:10.​1081/​CR-100101170 CrossRef
    5.Dry ME (2002) The Fischer–Tropsch process: 1950–2000. Catal Today 71:227–241. doi:10.​1016/​S0920-5861(01)00453-9 CrossRef
    6.Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744. doi:10.​1021/​cr050972v CrossRef
    7.Espinoza RL, Steynberg AP, Jager B, Vosloo AC (1999) Low temperature Fischer–Tropsch synthesis from a Sasol perspective. Appl Catal A 186:13–26. doi:10.​1016/​S0926-860X(99)00161-1 CrossRef
    8.Reuel RC, Bartholomew CH (1984) Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of Cobalt. J Catal 88:78–88. doi:10.​1016/​0021-9517(84)90111-8 CrossRef
    9.Reuel RC, Bartholomew CH (1984) The stoichiometries of H2 and CO adsorptions support and preparation on cobalt: effects of support and preparation. J Catal 77:63–77. doi:10.​1016/​0021-9517(84)90110-6 CrossRef
    10.Bartholomew CH, Reuel RC (1985) Cobalt-support interactions : their effects on adsorption and CO hydrogenation activity and selectivity properties. Ind Eng Chem Prod Res Dev 24:56–61. doi:10.​1021/​i300017a011 CrossRef
    11.Centi G, Perathoner S (2008) Catalysis by layered materials: a review. Microporous Mesoporous Mater 107:3–15. doi:10.​1016/​j.​micromeso.​2007.​03.​011 CrossRef
    12.Forano C, Hibino T, Leroux F, Taviot-Gueho C (2006) Layered double hydroxides. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science: developments in clay science. Elsevier, Amsterdam, pp 1021–1095CrossRef
    13.Albertazzi S, Basile F, Vaccari A (2004) Catalytic properties of hydrotalcite-type anionic clays. In: Wypych F, Satyanarayana KG (eds) Clay surfaces. Fundamentals and applications. Elsevier, Amsterdam, pp 497–546
    14.Cavani F, Trifiro F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301. doi:10.​1016/​0920-5861(91)80068-K CrossRef
    15.Sels BF, De Vos DE, Jacobs PA (2001) Hydrotalcite-like anionic clays in catalytic organic reactions. Catal Rev 43:443–488. doi:10.​1081/​CR-120001809 CrossRef
    16.Wang Q, O’Hare D (2012) Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112:4124–4155. doi:10.​1021/​cr200434v CrossRef
    17.Zhang Q, Kang J, Wang Y (2010) Development of novel catalysts for Fischer-Tropsch synthesis: tuning the product selectivity. ChemCatChem 2:1030–1058. doi:10.​1002/​cctc.​201000071 CrossRef
    18.Bruce L, Takos J, Turney TW (1990) Cobalt clays and double-layered hydroxides as Fischer-Tropsch catalysts. In: Comstock MJ (ed) Novel matererials in heterogeneous catalysis. American Chemical Society, Washington, pp 129–139CrossRef
    19.Khassin AA, Yurieva TM, Kustova GN et al (2001) Cobalt–aluminum co-precipitated catalysts and their performance in the Fischer–Tropsch synthesis. J Mol Catal A 168:193–207. doi:10.​1016/​S1381-1169(00)00529-X CrossRef
    20.Krylova MV, Kulukov AB, Knyazeva MI, Krylova AY (2008) Cobalt-containing catalysts made from layered double hydroxides for synthesis of hydrocarbons from carbon monoxide and hydrogen. Chem Technol Fuels Oils 44:36–39. doi:10.​1007/​s10553-008-0064-8 CrossRef
    21.Tsai Y-T, Mo X, Campos A et al (2011) Hydrotalcite supported Co catalysts for CO hydrogenation. Appl Catal A Gen 396:91–100. doi:10.​1016/​j.​apcata.​2011.​01.​043 CrossRef
    22.Fronzo Di A., Pirola C, Comazzi A, et al (2014) Co-based hydrotalcites as new catalysts for the Fischer-Tropsch synthesis process. Fuel 119:62–69. doi:10.​1016/​j.​fuel.​2013.​11.​014 CrossRef
    23.Tsyganok A, Sayari A (2006) Incorporation of transition metals into Mg–Al layered double hydroxides: coprecipitation of cations vs. their pre-complexation with an anionic chelator. J Solid State Chem 179:1830–1841. doi:10.​1016/​j.​jssc.​2006.​03.​029 CrossRef
    24.Navajas A, Campo I, Arzamendi G et al (2010) Synthesis of biodiesel from the methanolysis of sunflower oil using PURAL® Mg–Al hydrotalcites as catalyst precursors. Appl Catal B 100:299–309. doi:10.​1016/​j.​apcatb.​2010.​08.​006 CrossRef
    25.Díez V (2003) Effect of the chemical composition on the catalytic performance of MgyAlOx catalysts for alcohol elimination reactions. J Catal 215:220–233. doi:10.​1016/​S0021-9517(03)00010-1 CrossRef
    26.Tantirungrotechai J, Chotmongkolsap P, Pohmakotr M (2010) Synthesis, characterization, and activity in transesterification of mesoporous Mg–Al mixed-metal oxides. Microporous Mesoporous Mater 128:41–47. doi:10.​1016/​j.​micromeso.​2009.​08.​001 CrossRef
    27.Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn, Wiley, New York, 1376
    28.Xu M, Iglesia E, Apesteguía CR et al (1998) Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal 178:499–510. doi:10.​1006/​jcat.​1998.​2161 CrossRef
    29.Product information. Pural ® MG 30, 70 (2007) Sasol Germany Gmb H, Inorganic specialty chemicals web site. http://​www.​sasolgermany.​de/​hydrotalcites.​html . Accessed 25 Sep 2014
    30.Zhang Y, Xiong H, Liew K, Li J (2005) Effect of magnesia on alumina-supported cobalt Fischer-Tropsch synthesis catalysts. J Mol Catal A 237:172–181. doi:10.​1016/​j.​molcata.​2005.​04.​057 CrossRef
    31.Yao RS, Wu X, Du YL et al (2010) Study on the thermal decomposition behavior of MgAl-hydrotalcite compounds. Adv Mater Res 152–153:1451–1456. doi:10.​4028/​www.​scientific.​net/​AMR.​152-153.​1451 CrossRef
    32.León M, Díaz E, Bennici S et al (2010) Adsorption of CO2 on hydrotalcite-derived mixed oxides: sorption mechanisms and consequences for adsorption irreversibility. Ind Eng Chem Res 49:3663–3671. doi:10.​1021/​ie902072a CrossRef
    33.Jongsomjit B, Panpranot J, Goodwin JG (2001) Co-support compound formation in alumina-supported cobalt catalysts. J Catal 204:98–109. doi:10.​1006/​jcat.​2001.​3387 CrossRef
    34.Kloprogge JT, Frost RL (1999) Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites. J Solid State Chem 146:506–515. doi:10.​1006/​jssc.​1999.​8413 CrossRef
    35.Ulla M, Spretz R, Lombardo E et al (2001) Catalytic combustion of methane on Co/MgO: characterisation of active cobalt sites. Appl Catal B 29:217–229. doi:10.​1016/​S0926-3373(00)00204-6 CrossRef
    36.Xiao T, Ji S, Wang H et al (2001) Methane combustion over supported cobalt catalysts. J Mol Catal A 175:111–123. doi:10.​1016/​S1381-1169(01)00205-9 CrossRef
    37.Moulder JF, Stickle WF, Sobol PE, Bobem KD (1992) Handbook of X-ray photoelectron spectroscopy. A reference book of standard spectra for identification and interpretation of XPS Data, 1995th edn. Physical Electronics, Eden Prairie, pp 30–194
    38.Rodrigues A, da Costa P, Méthivier C, Dzwigaj S (2011) Controlled preparation of CoPdSiBEA zeolite catalysts for selective catalytic reduction of NO with methane and their characterisation by XRD, DR UV–Vis, TPR, XPS. Catal Today 176:72–76. doi:10.​1016/​j.​cattod.​2011.​03.​013 CrossRef
    39.Fu L, Liu Z, Liu Y et al (2005) Beaded cobalt oxide nanoparticles along carbon nanotubes: towards more highly integrated electronic devices. Adv Mater 17:217–221. doi:10.​1002/​adma.​200400833 CrossRef
    40.Sexton BA, Hughes AE, Turney TW (1986) An XPS and TPR study of the reduction of promoted catalysts. J Catal 97:390–406. doi:10.​1016/​0021-9517(86)90359-3 CrossRef
    41.Van’T Blink HFJ, Prins R (1986) Characterization of supported cobalt catalysts and cobalt-rhodium catalysts. J Catal 97:188–199. doi:10.​1016/​0021-9517(86)90049-7 CrossRef
    42.Viswanathan B, Gopalakrishnan R (1986) Effect of support and promoter in Fischer-Tropsch cobalt catalysts. J Catal 99:342–348. doi:10.​1016/​0021-9517(86)90359-3 CrossRef
    43.Brown R, Cooper ME, Whan DA (1982) Temperature programmed reduction of alumina-supported iron, cobalt and nickel bimetallic catalysts. Appl Catal 3:177–186. doi:10.​1016/​0166-9834(82)80090-0 CrossRef
    44.Jacobs G, Das TK, Zhang Y et al (2002) Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A 233:263–281. doi:10.​1016/​S0926-860X(02)00195-3 CrossRef
  • 作者单位:Angélica Forgionny (1)
    J. L. G. Fierro (2)
    Fanor Mondragón (1)
    Andrés Moreno (1)

    1. Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, UdeA - Colombia, Calle 70 No. 52 - 21, Medellín, Colombia
    2. Grupo de Energía y Química Sostenibles (EQS), Instituto de Catálisis y Petroleoquímica-CSIC, Marie Curie 2, 28049, Madrid, Spain
  • 刊物主题:Catalysis; Physical Chemistry; Pharmacy; Industrial Chemistry/Chemical Engineering; Characterization and Evaluation of Materials;
  • 出版者:Springer US
  • ISSN:1572-9028
文摘
Layered double hydroxides of the hydrotalcite (HT)-type materials have been considered as promising supports for Co-based Fischer–Tropsch synthesis (FTS) catalysts. In this work the effect of the Mg/Al ratio on the catalytic behavior of cobalt-based catalysts obtained from HTs precursors have been studied. Cobalt supported on Mg–Al oxides obtained from HTs Mg–Al precursors were prepared by wet impregnation method and calcined at 300 °C. The textural, structural and reducibility properties of the samples were characterized using different techniques. FTS was evaluated in a down-flow fixed-bed reactor at 20 bar, 250 °C and H2/CO ≈ 2 molar ratio. All catalysts were active and stable during 72 h testing time. The stability was improved by the presence of magnesium in the alumina support; however the CO conversion was negatively affected by increasing the Mg/Al ratio. The reducibility of cobalt decreased as the Mg/Al ratio increased, probably due to the strong Co–O–Mg interaction as evidenced by the formation of CoxOy–MgO mixed oxide. Furthermore, the activity of the catalysts was correlated with the H2-chemisorption measurements. The results suggest that HTs as Co-based catalysts were highly stable in FTS. Keywords Co-based catalyst Co-precipitation method Hydrotalcite Mixed oxide Fischer–Tropsch synthesis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700