Defluoridation Performance Comparison of Nano-hydrotalcite/Hydroxyapatite Composite with Calcined Hydrotalcite and Hydroxyapatite
详细信息    查看全文
  • 作者:Taju Sani ; Mohammedali Adem ; Geolar Fetter ; Pedro Bosch…
  • 关键词:Calcined hydrotalcite ; Nano ; hydrotalcite/hydroxyapatite composite ; Fluoride ; Fluorosis ; Memory effect
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:227
  • 期:3
  • 全文大小:521 KB
  • 参考文献:Abe, I., Iwasaki, S., Tokimoto, T., Kawasaki, N., Nakamura, T., & Tanada, S. (2004). Journal of Colloid and Interface Science, 275, 35–39.CrossRef
    Badillo-Almaraz, V. E., Flores, J. A., Arriola, H., López, F. A., & Ruiz-Ramírez, L. (2007). Journal of Radioanalytical and Nuclear Chemistry, 271, 741–744.CrossRef
    Bengtsson, Å., Shchukarev, A., Persson, P., & Sjöberg, S. (2009). Langmuir, 25, 2355–2362.CrossRef
    Chen, N., Zhang, Z., Feng, C., Li, M., Zhu, D., Chen, R., & Sugiura, N. (2010). Journal of Hazardous Materials, 183, 460–465.CrossRef
    Chinoy, N. J., Rao, M. V., Narayana, M. V., & Neelakanta, E. (1991). Reproductive Toxicology, 5, 505–512.CrossRef
    Christoffersen, J., Christoffersen, M. R., Arends, J., & Leonardsen, E. S. (1995). Caries Research, 29, 223–230.CrossRef
    de Roy, A., Forano, C., & Besse, J. P. (2006). Layered double hydroxides: synthesis and post-synthesis modification. In V. Rives (Ed.), Layered double hydroxides: present and future. New York: Nova Science Publishers Inc.
    Díaz-Barriga, F., Navarro-Quezada, A., Grijalva, M. I., Grimaldo, M., Loyola-Rodríguez, J. P., & Deogracias-Ortiz, M. (1997). Fluoride, 30, 233–239.
    Erickson, K. L., Bostrom, T. E., & Frost, R. L. (2004). Materials Letters, 59, 226–229.CrossRef
    Feng, L., Xu, W., Liu, T., & Liu, J. (2012). Journal of Hazardous Materials, 221–222, 228–235.CrossRef
    Fetter, G., Hernández, F., Maubert, M., Lara, V. H., & Bosch, P. (1997). Journal of Porous Materials, 4, 27–30.CrossRef
    Galicia Chacón, L., Molina Frechero, N., Oropeza, A., Gaona, E., & Juárez López, L. (2011). Revista Internacional de Contaminacion Ambiental, 27, 283–289.
    Gao, S., Sun, R., Wei, Z. G., Zhao, H. Y., Li, H. X., & Hu, F. (2009). Journal of Fluorine Chemistry, 130, 550–556.CrossRef
    Gómez-Hortigüela, L., Pérez-Pariente, J., Chebude, Y., & Díaz, I. (2014). RSC Advances, 4, 7998–8003.CrossRef
    Hammari, L. E. L., Laghzizil, A., Barboux, P., Lahlil, K., & Saoiabi, A. (2004). Journal of Hazardous Materials, B114, 41–44.CrossRef
    Hichour, M., Persin, F., Sandeaux, J., & Gavach, C. (2000). Separation and Purification Technology, 18, 1–11.CrossRef
    Jagtap, S., Yenkie, M. K., Labhsetwar, N., & Rayalu, S. (2012). Chemical Reviews, 112, 2454–2466.CrossRef
    Jiménez-Núñez, M. L., Olguín, M. T., & Solache-Ríos, M. (2007). Separation Science and Technology, 42, 3623–3639.CrossRef
    Jiménez-Reyes, M., & Solache-Ríos, M. (2010). Journal of Hazardous Materials, 180, 297–302.CrossRef
    Kloos, H., & Tekle Haimanot, R. (1999). Distribution of fluoride and fluorosis in Ethiopia and prospects for control. Tropical Medicine and International Health, 4, 355–364.CrossRef
    Leach, S. A. (1959). British Dental Journal, 106, 133–142.
    Liang, L., Jing, H., Min, W., & Xue, D. (2006a). Industrial and Engineering Chemistry Research, 45, 8623–8628.CrossRef
    Liang, L., Jing, H., Min, W., Evans, D. G., & Xue, D. (2006b). Journal of Hazardous Materials, B133, 119–128.
    Longanathan, P., Vigneswaran, S., Kandasamy, J., & Naidu, R. (2013). Journal of Hazardous Materials, 248–249, 1–19.CrossRef
    McCann, H. G. (1953). Journal of Biological Chemistry, 201, 247–259.
    Miyata, S. (1983). Clay Minerals, 31, 305–311.CrossRef
    M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, R. El Hamri, A. Taitai, J. Saudi Chem. Society (2012). doi:10.​1016/​j.​jscs.​2012.​03.​003 .
    Mullen, J. (2005). British Dental Journal, 199, 1–4.CrossRef
    Pandi, K., & Viswanathan, N. (2014). Carbohydrate Polymers, 112, 662–667.CrossRef
    Poinern, G. E. J., Ghosh, M. K., Ng, Y.-J., Issa, T. B., Anand, S., & Singh, P. (2011). Journal of Hazardous Materials, 185, 29–37.CrossRef
    Reimann, C., Bjorvatn, K., Frengstad, B., Melaku, Z., Tekle-Haimanot, R., & Siewers, U. (2003). Science of the Total Environment, 311, 65–80.CrossRef
    Rivera, J. A., Fetter, G., Baños, L., Guzman, J., & Bosch, P. (2009a). Journal of Porous Materials, 16, 401–408.CrossRef
    Rivera, J. A., Fetter, G., & Bosch, P. (2009b). Journal of Porous Materials, 16, 409–418.CrossRef
    Sato, T., Fujita, H., Endo, T., & Shimada, M. (1988). Solid, 5, 219–228.
    Sternitzke, V., Kaegi, R., Jean-Nicolas, A., Lewin, E., Hering, J. G., & Johnson, C. A. (2012). Science and Technology, 46, 802–809.CrossRef
    Sundaram, S. C., Viswanathan, N., & Meenakshi, S. (2008a). Journal of Hazardous Materials, 155, 206–215.CrossRef
    Sundaram, C. S., Viswanathan, N., & Meenakshi, S. (2008b). Bioresource Technology, 99, 8226–8230.CrossRef
    Sundaram, C. S., Viswanathan, N., & Meenakshi, S. (2009). Journal of Hazardous Materials, 172, 147–151.CrossRef
    Tekle-Haimanot, R., Fekadu, A., Bushera, B., Mekonnen, Y. (1995). Fluoride levels in water and endemic fluorosis in Ethiopian Rift valley. 1st International Workshop on Fluorosis Prevention and Defluoridation of Water. Int. Soc. Fluoride Res. eds E. Dahi & H. Bregnhoj. Ngurdoto, Tanzania, October (1995) 18–22.
    The World Health Organization. (1984). Guidelines for drinking water quality, WHO, volume 1, recommendations. Geneva, Switzerland.
    The World Health Organization. (1996). Guidelines for drinking water quality, WHO, volume 2, health criteria and other information, second edition. Geneva, Switzerland.
    UNICEF’s Position on Water Fluoridation: http://​www.​nofluoride.​com/​Unicef_​fluor.​cfm ; consulted on march 31, (2014).
    Viswanathan, N., & Meenakshi, S. (2010). Applied Clay Science, 48, 607–611.CrossRef
    Wang, H., Chen, J., Cai, Y., Ji, J., Liu, L., & Teng, H. H. (2007). Applied Clay Science, 35, 59–66.CrossRef
    Zhang, D., Luo, H., Zheng, L., Wang, K., Li, H., Wang, Y., & Feng, H. (2012). Journal of Hazardous Materials, 241–242, 418–426.CrossRef
  • 作者单位:Taju Sani (1)
    Mohammedali Adem (1)
    Geolar Fetter (2)
    Pedro Bosch (1) (3)
    Isabel Diaz (1) (4)

    1. Chemistry Department, Addis Ababa University, Addis Ababa, Ethiopia
    2. Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, Puebla, Mexico
    3. Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México City, Mexico
    4. Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049, Madrid, Spain
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
Fluoride retention from water is nowadays a serious health problem. This study reports the potential of a newly developed nano-hydrotalcite/hydroxyapatite (n-HT/HAp) composite, and its constituent materials, hydrotalcite (HT) and hydroxyapatite (HAp), in fluoride removal. Calcined hydrotalcites (cHT) showed a remarkable fluoride removal ability from water through memory effect mechanism. HAp, the mineral compound of bones, adsorbs fluoride as well but through ion exchange mechanism. Fluoride substitutes hydroxyls to produce fluorapatite. Among the tested calcined hydrotalcites, cHT Mg-Al (4:1) sample, composed of magnesium divalent cation to aluminum ratio of 4, was identified as the best-performing hydrotalcite. The differences among cHT samples in fluoride removal capacities are attributed to hydrotalcite composition as well as to particle size. The performance of these materials is compared with that of n-HT/HAp composite whose main features are basic acidic material and not yet tested in fluoride retention. Interestingly, n-HT/HAp also performs best, 98 %, slightly higher than the best cHT Mg-Al (4:1) sample with 97 % fluoride removal efficiency from such a high initial fluoride solution of 20 mg/L at 10 g/L dose, yielding the final residual fluoride concentrations of 0.36 and 0.6 mg/L, respectively; both meet the WHO standard for drinking water. Besides, the uncalcined hydrotalcite constituent added virtue to the advantage of using n-HT/HAp in fluoride removal as the efficiency was compensated by the nanometric size of the hydrotalcite particle.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700