Role of Calcination Temperature on the Hydrotalcite Derived MgO–Al2O3 in Converting Ethanol to Butanol
详细信息    查看全文
  • 作者:Karthikeyan K. Ramasamy ; Michel Gray ; Heather Job ; Daniel Santosa…
  • 关键词:Ethanol condensation ; Guerbet ; Hydrotalcite ; Butanol ; Mixed oxide ; MgO–Al2O3
  • 刊名:Topics in Catalysis
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:59
  • 期:1
  • 页码:46-54
  • 全文大小:774 KB
  • 参考文献:1.Sun J, Wang Y (2014) Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal 4(4):1078–1090. doi:10.​1021/​cs4011343 CrossRef
    2.Tews IJ, Jones SB, Santosa DM, Dai Z, Ramasamy K, Zhu Y (2010) A survey of opportunities for microbial conversion of biomass to hydrocarbon compatible fuels. vol PNNL-19704. PNNL, Richland
    3.Ramasamy KK, Wang Y (2014) Ethanol conversion to hydrocarbons on HZSM-5: effect of reaction conditions and Si/Al ratio on the product distributions. Catal Today 237:89–99. doi:10.​1016/​j.​cattod.​2014.​02.​044 CrossRef
    4.Ramasamy KK, Zhang H, Sun JM, Wang Y (2014) Conversion of ethanol to hydrocarbons on hierarchical HZSM-5 zeolites. Catal Today 238:103–110. doi:10.​1016/​j.​cattod.​2014.​01.​037 CrossRef
    5.Ni M, Leung DYC, Leung MKH (2007) A review on reforming bio-ethanol for hydrogen production. Int J Hydrog Energy 32(15):3238–3247. doi:10.​1016/​j.​ijhydene.​2007.​04.​038 CrossRef
    6.Angelici C, Weckhuysen BM, Bruijnincx PC (2013) Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. Chem Sus Chem 6(9):1595–1614. doi:10.​1002/​cssc.​201300214 CrossRef
    7.Ramasamy KK, Wang Y (2013) Thermochemical conversion fermentation-derived oxygenates to fuels. In: Zhang B, Wang Y (eds) Biomass processing, conversion and biorefinery. Nova Science Publishers Inc, New York, pp 289–300
    8.Zheng J, Tashiro Y, Wang Q, Sonomoto K (2015) Recent advances to improve fermentative butanol production: genetic engineering and fermentation technology. J Biosci Bioeng 119(1):1–9. doi:10.​1016/​j.​jbiosc.​2014.​05.​023 CrossRef
    9.Ndou AS, Plint N, Coville NJ (2003) Dimerisation of ethanol to butanol over solid-base catalysts. Appl Catal A 251(2):337–345. doi:10.​1016/​s0926-860x(03)00363-6 CrossRef
    10.Kozlowski JT, Davis RJ (2013) Heterogeneous catalysts for the Guerbet coupling of alcohols. ACS Catal 3(7):1588–1600. doi:10.​1021/​cs400292f CrossRef
    11.Carvalho DL, Borges LEP, Appel LG, Ramírez de la Piscina P, Homs N (2013) In situ infrared spectroscopic study of the reaction pathway of the direct synthesis of n-butanol from ethanol over MgAl mixed-oxide catalysts. Catal Today 213:115–121. doi:10.​1016/​j.​cattod.​2013.​03.​034 CrossRef
    12.Debecker DP, Gaigneaux EM, Busca G (2009) Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry 15(16):3920–3935. doi:10.​1002/​chem.​200900060 CrossRef
    13.Roelofs JCAA, Bokhoven JAV, Dillen AJV, John WG, Jong KPD (2002) The thermal decomposition of Mg ± Al hydrotalcites: effects of interlayer anions and characteristics of the final structure. Chem Eur J 8(24):5571–5579CrossRef
    14.Xie W, Peng H, Chen L (2006) Calcined Mg–Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. J Mol Catal A: Chem 246(1–2):24–32. doi:10.​1016/​j.​molcata.​2005.​10.​008 CrossRef
    15.Chimentao R, Abello S, Medina F, Llorca J, Sueiras J, Cesteros Y, Salagre P (2007) Defect-induced strategies for the creation of highly active hydrotalcites in base-catalyzed reactions. J Catal 252(2):249–257. doi:10.​1016/​j.​jcat.​2007.​09.​015 CrossRef
    16.Liu Y, Lotero E, Goodwin JG, Mo X (2007) Transesterification of poultry fat with methanol using Mg–Al hydrotalcite derived catalysts. Appl Catal A 331:138–148. doi:10.​1016/​j.​apcata.​2007.​07.​038 CrossRef
    17.Shen JY, Tu M, Hu C (1998) Structural and surface acid/base properties of hydrotalcite-derived MgAlO oxides calcined at varying temperatures. J Solid State Chem 137(2):295–301. doi:10.​1006/​jssc.​1997.​7739 CrossRef
    18.Rey F, Fornes V, Rojo JM (1992) Thermal-decomposition of hydrotalcites—an infrared and nuclear-magnetic-resonance spectroscopic study. J Chem Soc Faraday Trans 88(15):2233–2238. doi:10.​1039/​Ft9928802233 CrossRef
    19.Cosimo JID, D´ıez VK, Xu M, Iglesia E, Apesteguia CR (1998) Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal 178:499–510CrossRef
    20.Kuśtrowski P, Chmielarz L, Bożek E, Sawalha M, Roessner F (2004) Acidity and basicity of hydrotalcite derived mixed Mg–Al oxides studied by test reaction of MBOH conversion and temperature programmed desorption of NH3 and CO2. Mater Res Bull 39(2):263–281. doi:10.​1016/​j.​materresbull.​2003.​09.​032 CrossRef
    21.Hibino T, Tsunashima A (1997) Formation of spinel from a hydrotalcite-like compound at low temperature: reaction between edges of crystallites. Clays Clay Miner 45(6):842–853. doi:10.​1346/​Ccmn.​1997.​0450608 CrossRef
    22.Akitt JW (1989) Multinuclear studies of aluminum compounds. Prog Nucl Magn Reson Spectrosc 21:1–149. doi:10.​1016/​0079-6565(89)80001-9 CrossRef
    23.MacKenzie KJD, Meinhold RH, Sherriff BL, Xu Z (1993) 27Al and 25 Mg solid-state magic-angle spinning nuclear magnetic resonance study of hydrotalcite and its thermal decomposition sequence. J Mater Chem 3(12):1263–1269CrossRef
    24.Park T-J, Choi S-S, Kim Y (2009) 27Al solid-state NMR structural studies of hydrotalcite compounds calcined at different temperatures. Bull Korean Chem Soc 30(1):149–152CrossRef
    25.Corma A, Fornes V, Rey F (1994) Hydrotalcites as base catalysts—influence of the chemical-composition and synthesis conditions on the dehydrogenation of isopropanol. J Catal 148(1):205–212. doi:10.​1006/​jcat.​1994.​1202 CrossRef
    26.Díez V (2003) Effect of the chemical composition on the catalytic performance of MgyAlOx catalysts for alcohol elimination reactions. J Catal 215(2):220–233. doi:10.​1016/​s0021-9517(03)00010-1 CrossRef
    27.Erickson KL, Bostrom TE, Frost RL (2005) A study of structural memory effects in synthetic hydrotalcites using environmental SEM. Mater Lett 59(2–3):226–229. doi:10.​1016/​j.​matlet.​2004.​08.​035 CrossRef
    28.Ramasamy KK, Gerber MA, Flake M, Zhang H, Wang Y (2014) Conversion of biomass-derived small oxygenates over HZSM-5 and its deactivation mechanism. Green Chem 16(2):748–760. doi:10.​1039/​C3gc41369a CrossRef
    29.Rao KK, Gravelle M, Valente JS, Fc Figueras (1998) Activation of Mg–Al hydrotalcite catalysts for aldol condensation reactions. J Catal 173:115–121CrossRef
    30.Constantino VRL, Pinnavaia TJ (1994) Structure-reactivity relationships for basic catalysts derived from a Mg2+/A13+/CO layered double hydroxide. Catal Lett 23:361–367CrossRef
    31.Kozlowski JT, Davis RJ (2013) Sodium modification of zirconia catalysts for ethanol coupling to 1-butanol. J Energy Chem 22(1):58–64. doi:10.​1016/​s2095-4956(13)60007-8 CrossRef
    32.Birky TW, Kozlowski JT, Davis RJ (2013) Isotopic transient analysis of the ethanol coupling reaction over magnesia. J Catal 298:130–137. doi:10.​1016/​j.​jcat.​2012.​11.​014 CrossRef
  • 作者单位:Karthikeyan K. Ramasamy (1) (2)
    Michel Gray (1)
    Heather Job (1)
    Daniel Santosa (1)
    Xiaohong Shari Li (2)
    Arun Devaraj (3)
    Abhi Karkamkar (1)
    Yong Wang (1) (2) (4)

    1. Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
    2. Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
    3. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
    4. The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
  • 刊物主题:Catalysis; Physical Chemistry; Pharmacy; Industrial Chemistry/Chemical Engineering; Characterization and Evaluation of Materials;
  • 出版者:Springer US
  • ISSN:1572-9028
文摘
In the base catalyzed ethanol condensation reactions, the calcined MgO–Al2O3 derived hydrotalcites used broadly as catalytic material and the calcination temperature plays a big role in determining the catalytic activity. The characteristics of the hydrotalcite material treated between catalytically relevant temperatures 450 and 800 °C have been studied with respect to the physical, chemical, and structural properties and compared with catalytic activity testing. With the increasing calcination temperature, the total measured catalytic basicity dropped linearly with the calcination temperature and the total measured acidity stayed the same for all the calcination temperatures except 800 °C. However, the catalyst activity testing does not show any direct correlation between the measured catalytic basicity and the catalyst activity to the ethanol condensation reaction to form 1-butanol. The highest ethanol conversion of 44 % with 1-butanol selectivity of 50 % was achieved for the 600 °C calcined hydrotalcite material.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700