The effect of hydroxyapatite particle size on viscoelastic properties and calcium release from a thermosensitive triblock copolymer
详细信息    查看全文
文摘
Well-defined “smart” injectable hydrogel based on hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(lactic acid-co-glycolic acid) (PLA/PGA) copolymer (PLGA-PEG-PLGA) gelling at the body temperature was modified by bioactive hydroxyapatite (HAp) in the form of micro-, nano-, and core-shell particles (μ-HAp, n-HAp, and CS-x, respectively) to be applicable as calcium delivery system in bone regeneration. Viscoelastic moduli increased with HAp content as expected. Whereas systems containing μ-HAp or CS-x particles maintained two sol-gel and gel-sol phase transitions, the n-HAp containing system showed only one sol-gel phase transition due to the strong interactions between polymer chain and the n-HAp surface. In vitro, studies proved the controlled uniform release of calcium cations from both CS-x and n-HAp over the 9-day period without any initial burst release.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700