Effect of Polyhydroxybutyrate (PHB) storage on l-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation
详细信息    查看全文
  • 作者:Meijuan Xu ; Jingru Qin ; Zhiming Rao ; Hengyi You ; Xian Zhang…
  • 关键词:l ; Arginine ; Poly ; β ; hydroxybutyrate (PHB) ; NAD kinase ; Corynebacterium crenatum SYPA 5
  • 刊名:Microbial Cell Factories
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:15
  • 期:1
  • 全文大小:2,080 KB
  • 参考文献:1.Granik VG. Metabolism of l -Arginine. Pharm Chem J. 2003;37:111–27.CrossRef
    2.Elias DB, Barbosa MC, Rocha LB, Dutra LL, Silva HF, Martins AM, Gonçalves RF. l -arginine as an adjuvant drug in the treatment of sickle cell anaemia. Br J Haematol. 2013;160:410–2.CrossRef
    3.Hristina K, Langerholc T, Trapecar M. Novel metabolic roles of l -arginine in body energy metabolism and possible clinical applications. J Nutr Health Aging. 2014;18:213–8.CrossRef
    4.Glansdorff N, Xu Y. Microbial arginine biosynthesis: pathway, regulation and industrial production. In: Wendisch V, editor. Amino acid biosynthesis~pathways, regulation and metabolic engineering, vol. 5. Berlin, Heidelberg: Springer; 2007. p. 219–57 (Microbiology Monographs).CrossRef
    5.Xu M, Rao Z, Yang J, Dou W, Xu Z. The effect of a LYSE exporter overexpression on l -arginine production in Corynebacterium crenatum. Curr Microbiol. 2013;67:271–8.CrossRef
    6.Schneider J, Niermann K, Wendisch VF. Production of the amino acids l-glutamate, l -lysine, l -ornithine and l -arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol. 2011;154:191–8.CrossRef
    7.Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M. Reengineering of a Corynebacterium glutamicum l -arginine and L-citrulline producer. Appl Environ Microbiol. 2009;75:1635–41.CrossRef
    8.Caldara M, Dupont G, Leroy F, Goldbeter A, De Vuyst L, Cunin R. Arginine biosynthesis in Escherichia coli: experimental perturbation and mathematical modeling. J Biol Chem. 2008;283:6347–58.CrossRef
    9.Xu H, Dou W, Xu H, Zhang X, Rao Z, Shi Z, Xu Z. A two-stage oxygen supply strategy for enhanced l -arginine production by Corynebacterium crenatum based on metabolic fluxes analysis. Biochem Eng J. 2009;43:41–51.CrossRef
    10.Xu M, Rao Z, Xu H, Lan C, Dou W, Zhang X, Jin J, Xu Z. Enhanced production of l -arginine by expression of Vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum. Appl Biochem Biotechnol. 2011;163:707–19.CrossRef
    11.Xu M, Rao Z, Yang J, Xia H, Dou W, Jin J, Xu Z. Heterologous and homologous expression of the arginine biosynthetic argC~H cluster from Corynebacterium crenatum for improvement of (l )-arginine production. J Ind Microbiol Biotechnol. 2012;39:495–502.CrossRef
    12.Xu M, Rao Z, Dou W, Yang J, Jin J, Xu Z. Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum l -arginine production. Amino Acids. 2012;43:255–66.CrossRef
    13.Braunegg G, Lefebvre G, Genser KF. Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol. 1998;65(2–3):127–61.CrossRef
    14.Lee YS. Plastic bacteria Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol. 1996;14:431–8.CrossRef
    15.Harding KG, Dennis JS, von Blottnitz H, Harrison ST. Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-beta-hydroxybutyric acid using life cycle analysis. J Biotechnol. 2007;130:57–66.CrossRef
    16.Wang Q, Yu H, Xia Y, Kang Z, Qi Q. Complete PHB mobilization in Escherichia coli enhances the stress tolerance: a potential biotechnological application. Microb Cell Fact. 2009;8:9.CrossRef
    17.Gu P, Kang J, Yang F, Wang Q, Liang Q, Qingsheng Q. The improved l -tryptophan production in recombinant Escherichia coli by expressing the polyhydroxybutyrate synthesis pathway. Appl Microbiol Biotechnol. 2013;97:4121–7.CrossRef
    18.Liu Q, Ouyang SP, Kim J, Chen GQ. The impact of PHB accumulation on l -glutamate production by recombinant Corynebacterium glutamicum. J Biotechnol. 2007;132:273–9.CrossRef
    19.Kang Z, Gao C, Wang Q, Liu H, Qi Q. A novel strategy for succinate and polyhydroxybutyrate co-production in Escherichia coli. Bioresour Technol. 2010;101:7675–8.CrossRef
    20.Senior PJ, Dawes EA. The regulation of poly-P-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J. 1973;134:225–38.CrossRef
    21.Li ZJ, Cai L, Wu Q, Chen GQ. Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly(3-hydroxybutyrate) production. Appl Microbiol Biotechnol. 2009;83:939–47.CrossRef
    22.Glansdorff N, Xu Y. Microbial Arginine Biosynthesis:pathway, Regulation and Industrial Production. Microbiol Monogr. 2006;5:219–57.CrossRef
    23.Wang Y, San KY, Bennett GN. Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP(+)-dependent GapB from Bacillus subtilis and addition of NAD kinase. J Ind Microbiol Biotechnol. 2013;40:1449–60.CrossRef
    24.Hk C, Gm W. Regeneration of nicotinamide cofactors for use in organic synthesis. Appl Biochem Biotechnol. 1987;14:147–97.CrossRef
    25.Liu W, Wang P. Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv. 2007;25:369–84.CrossRef
    26.Garavaglia S, Raffaelli N, Finaurini L, Magni G, Rizzi M. A novel fold revealed by mycobacterium tuberculosis NAD kinase a key allosteric enzyme in NADP biosynthesis. JBC Papers in Press. 1993;279(39):40980–6.
    27.Kawai S, Mori S, Mukai T. Molecular characterization of Escherichia coli NAD kinase. Eur J Biochem. 2001;268(15):4359–65.CrossRef
    28.Kawai S, Suzuki S, Mori S, Murata K. Molecular cloning and identification of UTR1 of a yeast Saccharomyces cerevisiae as a gene encoding an NAD kinase. FEMS Microbiol Lett. 2001;200:181–4.CrossRef
    29.Lerner F, Niere M, Ludwig A, Ziegler M. Structural and functional characterization of human NAD kinase. Biochem Biophys Res Commun. 2001;288:69–74.CrossRef
    30.Grose JH, Joss L, Velick SF, Roth JR. Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc Natl Acad Sci USA. 2006;103:7601–6.CrossRef
    31.Yin L, Zhao J, Chen C, Hu X, Wang X. Enhancing the carbon flux and NADPH supply to increase l -isoleucine production in Corynebacterium glutamicum. Biotechnol Bioprocess Eng. 2014;19:132–42.CrossRef
    32.Shi A, Zhu X, Lu J, Zhang X, Ma Y. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng. 2013;16:1–10.CrossRef
    33.Lee HC, Kim JS, Jang W, Kim SY. Thymidine production by overexpressing NAD+ kinase in an Escherichia coli recombinant strain. Biotechnol Lett. 2009;31:1929–36.CrossRef
    34.Lindner SN, Niederholtmeyer H, Schmitz K, Schoberth SM, Wendisch VF. Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Appl Microbiol Biotechnol. 2010;87:583–93.CrossRef
    35.Shi F, Li K, Huan X, Wang X. Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and l -isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Appl Biochem Biotechnol. 2013;171:504–21.CrossRef
    36.Bhubalan K, Chuah JA, Shozui F, Brigham CJ, Taguchi S, Sinskey AJ, Rha C, Sudesh K. Characterization of the highly active polyhydroxyalkanoate synthase of Chromobacterium sp. strain USM2. Appl Environ Microbiol. 2011;77:2926–33.CrossRef
    37.Steinbuchel PSA, Schlegel DHG. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol. 1988;170:5837–47.
    38.Nishimura T, Saito T, Tomita K. Purification and properties of β-ketothiolase from Zoogloea ramigera. Arch Microbiol. 1978;116:21–7.CrossRef
    39.Shi F, Huan X, Wang X, Ning J. Overexpression of NAD kinases improves the l -isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Enzyme Microb Technol. 2012;51:73–80.CrossRef
    40.Shigeyuki K, Kousaku M. Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Biosci Biotechnol Biochem. 2008;72:919–30.CrossRef
    41.Ando T, Ohashi K, Ochiai A, Mikami B, Kawai S, Murata K. Structural determinants of discrimination of NAD+ from NADH in yeast mitochondrial NADH kinase Pos5. J Biol Chem. 2011;286:9.
    42.Xu D, Tan Y, Shi F, Wang X. An improved shuttle vector constructed for metabolic engineering research in Corynebacterium glutamicum. Plasmid. 2010;64:85–91.CrossRef
    43.Magni G, Orsomando G, Raffaell N. Structural and functional properties of NAD kinase, a key enzyme in NADP biosynthesis. Med Chem. 2006;6:739–46.
    44.Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbuchel A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol. 1999;171:73–80.CrossRef
    45.Mayet C, Deniset-Besseau A, Prazeres R, Ortega JM, Dazzi A. Analysis of bacterial polyhydroxybutyrate production by multimodal nanoimaging. Biotechnol Adv. 2013;31:369–74.CrossRef
    46.Braunegg G, Sonnleimer B, Lafferty R. A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acidin microbial biomass. European J Appl Microbiol Biotechnol. 1978;6:29–37.CrossRef
  • 作者单位:Meijuan Xu (1)
    Jingru Qin (1)
    Zhiming Rao (1)
    Hengyi You (1)
    Xian Zhang (1)
    Taowei Yang (1)
    Xiaoyuan Wang (1)
    Zhenghong Xu (2)

    1. The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People’s Republic of China
    2. Laboratory of Pharmaceutical Engineering, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, 214122, Jiangsu, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Applied Microbiology
    Environmental Engineering/Biotechnology
  • 出版者:BioMed Central
  • ISSN:1475-2859
文摘
Background Corynebacterium crenatum SYPA 5 is the industrial strain for l-arginine production. Poly-β-hydroxybutyrate (PHB) is a kind of biopolymer stored as bacterial reserve materials for carbon and energy. The introduction of the PHB synthesis pathway into several strains can regulate the global metabolic pathway. In addition, both the pathways of PHB and l-arginine biosynthesis in the cells are NADPH-dependent. NAD kinase could upregulate the NADPH concentration in the bacteria. Thus, it is interesting to investigate how both PHB and NAD kinase affect the l-arginine biosynthesis in C. crenatum SYPA 5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700