Biosynthesis of poly(2-hydroxybutyrate-co-lactate) in metabolically engineered Escherichia coli
详细信息    查看全文
  • 作者:Cheol Gi Chae ; You Jin Kim ; Se Jin Lee…
  • 关键词:PHA ; 2 ; hydroxyacid ; lactate ; 2 ; hydroxybutyrate ; poly(2 ; hydroxybutyrate ; co ; lactate) ; recombinant E. coli
  • 刊名:Biotechnology and Bioprocess Engineering
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:21
  • 期:1
  • 页码:169-174
  • 全文大小:289 KB
  • 参考文献:1.Oh, Y. H., I. Y. Eom, J. C. Joo, J. H. Yu, B. K. Song, S. H. Lee, S. H. Hong, and S. J. Park (2015) Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean J. Chem. Eng. 32: 1945–1959.CrossRef
    2.Lee, S. Y. (1996) Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1–14.CrossRef
    3.Madison, L. L. and G. W. Huisman (1999) Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21–53.
    4.Steinbüchel, A. and H. E. Valentin (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol. Lett. 128: 219–228.CrossRef
    5.Yang, T. H., T. W. Kim, H. O. Kang, S. H. Lee, E. J. Lee, S. C. Lim, S. O. Oh, A. J. Song, S. J. Park, and S. Y. Lee (2010) Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol. Bioeng. 105: 150–160.CrossRef
    6.Yuan, W., Y. Jia, J. Tian, K. D. Snell, U. Muh, A. J. Sinskey, R. H. Lambalot, C. T. Walsh, and J. Stubbe (2001) Class I and III polyhydroxyalkanoate synthases from Ralstonia eutropha and Allochromatium vinosum: Characterization and substrate specificity studies. Arch. Biochem. Biophys. 394: 87–98.CrossRef
    7.Zhang, S., M. Kamachi, Y. Takagi, R. W. Lenz, and S. Goodwin (2001) Comparative study of the relationship between monomer structure and reactivity for two polyhydroxyalkanoate synthases. Appl. Microbiol. Biotechnol. 56: 131–136.CrossRef
    8.Yang, T. H., Y. K. Jung, H. O. Kang, T. W. Kim, S. J. Park, and S. Y. Lee (2011) Tailor-made type II Pseudomonas PHA synthases and their use for the biosynthesis of polylactic acid and its copolymer in recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 90: 603–614.CrossRef
    9.Yang, J. E., S. Y. Choi, J. H. Shin, S. J. Park, and S. Y. Lee (2013) Microbial production of lactate-containing polyesters. Microb. Biotechnol. 6: 621–636.
    10.Park, S. J., T. W. Lee, S. C. Lim, T. W. Kim, H. Lee, M. K. Kim, S. H. Lee, B. K. Song, and S. Y. Lee (2012) Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Appl. Microbiol. Biotech. 93: 273–283.CrossRef
    11.Park, S. J., S. Y. Lee, T. W. Kim, Y. K. Jung, and T. H. Yang (2012) Biosynthesis of lactate containing polyesters by metabolically engineered bacteria. Biotechnol. J. 7: 199–212.CrossRef
    12.Park, S. J., T. W. Kim, M. K. Kim, S. Y. Lee, and S. C. Lim (2012) Advanced bacterial polyhydroxyalkanoates: Towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol. Adv. 30: 1196–1206.CrossRef
    13.Park, S. J., Y. A. Jang, H. Lee, A. R. Park, J. E. Yang, J. Shin, Y. H. Oh, B. K. Song, J. Jegal, S. H. Lee, and S. Y. Lee (2013) Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates. Metab. Eng. 20: 20–28.CrossRef
    14.Park, S. J., K. H. Kang, H. Lee, A. R. Park, J. E. Yang, Y. H. Oh, B. K. Song, J. Jegal, S. H. Lee, and S. Y. Lee (2013 Propionyl-CoA dependent biosynthesis of 2-hydroxybutyrate containing polyhydroxyalkanoates in metabolically engineered Escherichia coli. J. Biotechnol. 165: 93–98.CrossRef
    15.Park, S. J., Y. A. Jang, W. Noh, Y. H. Oh, H. Lee, Y. David, M.G. Baylon, J. Shin, J. E. Yang, S. Y. Choi, S. H. Lee, and S. Y. Lee (2014) Metabolic engineering of Ralstonia eutropha for the production of polyhydroxyalkanoates from sucrose. Biotechnol. Bioeng. 112: 638–643.CrossRef
    16.Jung, Y. K., T. Y. Kim, S. J. Park, and S. Y. Lee (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng. 105: 161–171.CrossRef
    17.Taguchi, S., M. Yamada, K. Matsumoto, K. Tajima, Y. Satoh, M. Munekata, K. Ohno, K. Kohda, T. Shimamura, H. Kambe, and S. Obata (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc. Natl. Acad. Sci. USA. 105: 17323–17327.CrossRef
    18.Ochi, A., K. Matsumoto, T. Ooba, K. Sakai, T. Tsuge, and S. Taguchi (2013) Engineering of class I lactate-polymerizing polyhydroxyalkanoate synthases from Ralstonia eutropha that synthesize lactate-based polyester with a block nature. Appl. Microbiol. Biotechnol. 97: 3441–3447.CrossRef
    19.Matsumoto, K, S. Terai, A. Ishiyama, J. Sun, T. Kabe, Y. Song, J. M. Nduko, T. Iwata, and S. Taguchi (2013) One-pot microbial production, mechanical properties, and enzymatic degradation of isotactic P[(R)-2-hydroxybutyrate] and Its Copolymer with (R)-Lactate. Biomacromol. 14: 1913–1918.CrossRef
    20.Park, J. H., K. H. Lee, T. Y. Kim, and S. Y. Lee (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. USA. 104: 7797–7802.CrossRef
    21.Braunegg, G., B. Sonnleitner, and R. M. Lafferty (1978) A rapid gas chromatographic method for the determination of poly-ß-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6: 29–37.CrossRef
    22.Choi, J. and S. Y. Lee (1999) Efficient and economical recovery of Poly(3-hydroxybutylate) from recombinant Escherichia coli by simple digestion with chemicals. Biotechnol. Bioeng. 62: 546–553.CrossRef
  • 作者单位:Cheol Gi Chae (1)
    You Jin Kim (1)
    Se Jin Lee (2)
    Young Hoon Oh (2)
    Jung Eun Yang (3)
    Jeong Chan Joo (2)
    Kyoung Hee Kang (2)
    Young-Ah Jang (2)
    Hyuk Lee (4)
    A-Reum Park (4)
    Bong Keun Song (2)
    Sang Yup Lee (3)
    Si Jae Park (1)

    1. Department of Environmental Engineering and Energy, Myongji University, Yongin, 17058, Korea
    2. Center for Bio-based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
    3. Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST, Daejeon, 34141, Korea
    4. Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
  • 出版者:The Korean Society for Biotechnology and Bioengineering
  • ISSN:1976-3816
文摘
We have previously reported in vivo biosynthesis of polyhydroxyalkanoates containing 2-hydroxyacid monomers such as lactate and 2-hydroxybutyrate in recombinant Escherichia coli strains by the expression of evolved Clostridium propionicum propionyl-CoA transferase (PctCp) and Pseudomonas sp. MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1 Ps6-19). Here, we report the biosynthesis of poly(2-hydroxybutyrate-co-lactate)[P(2HB-co-LA)] by direct fermentation of metabolically engineered E. coli strain. Among E. coli strains WL3110, XL1-Blue, and BL21(DE3), recombinant E. coli XL1-Blue strain expressing PhaC1437 and Pct540 produced P(76.4mol%2HB-co-23.6mol%LA) to the highest content of 88 wt% when it was cultured in a chemically defined medium containing 20 g/L of glucose and 2 g/L of sodium 2-hydroxybutyrate. When recombinant E. coli XL1-Blue strain expressing PhaC1437 and Pct540 was cultured in a chemically defined medium containing 20 g/L of glucose and varying concentration of sodium 2-hydroxybutyrate, 2HB monomer fraction in P(2HB-co-LA) increased proportional to the concentration of sodium 2-hydroxybutyrate added to the culture medium. P(2HB-co-LA)] could also be produced from glucose as a sole carbon source without sodium 2-hydroxybutyrate into the culture medium. Recombinant E. coli XL1-Blue strain expressing the phaC1437, pct540, cimA3.7, and leuBCD genes together with the L. lactis Il1403 panE gene, successfully produced P(23.5mol%2HB-co-76.5mol%LA)] to the polymer content of 19.4 wt% when it cultured in a chemically defined medium containing 20 g/L of glucose. The metabolic engineering strategy reported here should be useful for the production of novel copolymer P(2HB-co-LA)].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700