Transfer of arsenic and phosphorus from soils to the fronds and spores of arsenic hyperaccumulator Pteris vittata and three non-hyperaccumulators
详细信息    查看全文
  • 作者:Jason T. Lessl ; Dong Xing Guan ; Emily Sessa ; Bala Rathinasabapathi…
  • 关键词:Spore ; Hyperaccumulator ; Arsenic ; Phosphate ; Fern ; Pteris vittata
  • 刊名:Plant and Soil
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:390
  • 期:1-2
  • 页码:49-60
  • 全文大小:1,730 KB
  • 参考文献:Aina R, Asero R, Ghiani A et al (2010) Exposure to cadmium-contaminated soils increases allergenicity of Poa annua L. pollen. Allergy 65:1313-321. doi:10.-111/?j.-398-9995.-010.-2364.?x View Article PubMed
    Ajmone-Marsan F, Biasioli M (2010) Trace elements in soils of urban areas. Water Air Soil Pollut 213:121-43. doi:10.-007/?s11270-010-0372-6 View Article
    Baldwin PR, Butcher DJ (2007) Phytoremediation of arsenic by two hyperaccumulators in a hydroponic environment. Microchem J 85:297-00. doi:10.-016/?j.?microc.-006.-7.-05 View Article
    Catarecha P, Segura MD, Franco-Zorrilla JM et al (2007) A Mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell Online 19:1123-133. doi:10.-105/?tpc.-06.-41871 View Article
    Chen M, Ma LQ, Hoogeweg CG, Harris WG (2001) Arsenic background concentrations in Florida, U.S.A. surface soils: determination and interpretation. Environ Forensic 2:117-26. doi:10.-006/?enfo.-001.-050 View Article
    Chen R, Smith BW, Winefordner JD et al (2004) Arsenic speciation in Chinese brake fern by ion-pair high-performance liquid chromatography-inductively coupled plasma mass spectroscopy. Anal Chim Acta 504:199-07. doi:10.-016/?j.?aca.-003.-0.-42 View Article
    Cloutier-Hurteau B, Gauthier S, Turmel M-C et al (2014) Trace elements in the pollen of Ambrosia artemisiifolia: what is the effect of soil concentrations? Chemosphere 95:541-49. doi:10.-016/?j.?chemosphere.-013.-9.-13 View Article PubMed
    FDEP (2005) Technical Report: Development of Cleanup Target Levels (CTLs) for Chapter 62-77, F.A.C.
    Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol. doi:10.-389/?fphys.-012.-0182 PubMed Central PubMed
    Gress JK, Lessl JT, Dong X, Ma LQ (2014) Assessment of children’s exposure to arsenic from CCA-wood staircases at apartment complexes in Florida. Sci Total Environ 476-77:440-46. doi:10.-016/?j.?scitotenv.-014.-1.-18 View Article PubMed
    Gumaelius L, Lahner B, Salt DE, Banks JA (2004) Arsenic hyperaccumulation in gametophytes of Pteris vittata. A new model system for analysis of arsenic hyperaccumulation. Plant Physiol 136:3198-208. doi:10.-104/?pp.-104.-44073 View Article PubMed Central PubMed
    Horváth A, Balásházy I, Farkas á et al (2011) Quantification of airway deposition of intact and fragmented pollens. Int J Environ Health Res 21:427-40. doi:10.-080/-9603123.-011.-74269 View Article PubMed
    Hughes MF, Beck BD, Chen Y et al (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123:305-32. doi:10.-093/?toxsci/?kfr184 View Article PubMed Central PubMed
    Kranner I, Colville L (2011) Metals and seeds: biochemical and molecular implications and their significance for seed germination. Met Toler Plants Lichens 72:93-05. doi:10.-016/?j.?envexpbot.-010.-5.-05
    Lessl JT, Ma LQ (2013) Sparingly-soluble phosphate rock induced significant plant growth and arsenic uptake by Pteris vittata from three contaminated soils. Environ Sci Technol 47:5311-318. doi:10.-021/?es400892a View Article PubMed
    Lessl JT, Ma LQ, Rathinasabapathi B, Guy C (2013) Novel phytase from Pteris vittata resistant to arsenate, high temperature, and soil deactivation. Environ Sci Technol 47:2204-211. doi:10.-021/?es3022073 View Article PubMed
    Li W, Chen T, Chen Y, Lei M (2005a) Role of trichome of Pteris vittata L. in arsenic hyperaccumulation. Sci China C Life Sci 48:148-54. doi:10.-007/?BF02879667 PubMed
    Li W, Khan MA, Yamaguchi S, Kamiya Y (2005b) Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regul 46:45-0. doi:10.-007/?s10725-005-6324-2 View Article
    Liao X-Y, Chen T-B, Lei M et al (2004) Root distributions and elemental accumulations of Chinese brake (Pteris vittata L.) from As-contaminated soils. Plant Soil 261:109-16. doi:10.-023/?B:?PLSO.-000035578.-4164.?fa View Article
    Lombi E, Zhao F-J, Fuhrmann M et al (2002) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156:195-03. doi:10.-046/?j.-469-8137.-002.-0512.?x View Article
    Luongo T, Ma LQ (2005) Characteristics of arsenic accumulation by Pteris and non-Pteris ferns. Plant Soil 277:117-26. doi:10.-007/?s11104-005-6335-9 View Article
    Ma LQ, Komar KM, Tu C et al (2001) A fern that hyperaccumulates arsenic. Nature 409:579-79. doi:10.-038/-5054664 View Article PubMed
    Makra L, Sánta T, Matyasovszky I et al (2010) Airborne pollen in three European cities: detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories. J Geophys Res Atmos 115, D24220. doi:10.-029/-010JD014743 View Article
    Marschner H (2012) Marschner’s mineral nutrition of higher plants. Academic, London
    Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistan
  • 作者单位:Jason T. Lessl (1) (2)
    Dong Xing Guan (1)
    Emily Sessa (3)
    Bala Rathinasabapathi (4)
    Lena Q. Ma (1) (2)

    1. State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China
    2. Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, USA
    3. Department of Biology, University of Florida, Gainesville, FL, 32611, USA
    4. Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Soil Science and Conservation
    Plant Physiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5036
文摘
Background and aims Concentrations of chemical analogs arsenic (As) and phosphorus (P) were measured in As-hyperaccumulator (Pteris vittata; PV) and three non As-hyperaccumulators (Thelypteris kunthii, Nephrolepsis brownii, and N. falcata) to draw inferences regarding their uptake from soils to roots and translocation to fronds and spores. Methods Frond and root samples of 150 ferns at peak spore maturation were collected with associated soils between July 2012 and July 2014. Results Arsenic in PV spores (45.4-36?mg kg?) exceeded soil As (0.60-11?mg kg?) in all sites and at clean sites (0.60-.17?mg kg?) for non-hyperaccumulator spores (1.83-.60?mg kg?). In PV, As in fronds and spores correlated positively with soil As (r--.71-.74) with bioconcentration factors (tissue As:soil As) of 14.3-54 and 3.26-3.6 compared to 0.08-.44 and 0.03-.37 for three non-hyperaccumulators. However, P in PV spores (1977-832?mg kg?) correlated negatively with frond (1028-439?mg kg?; r-??0.43) and soil (76.2-70?mg kg?; r-??0.34) P. Conclusions PV hyperaccumulates As into fronds and spores from soils with trace As. Since PV spores constituted ~9?% of frond biomass, the elevated spore As may deserve further investigation in their role as a potential health hazard and metal cycling.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700