Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia)
详细信息    查看全文
  • 作者:Antony van der Ent ; Guillaume Echevarria ; Mark Tibbett
  • 关键词:Diffusion sink ; Nickel speciation ; Labile pools ; Root exudates
  • 刊名:Chemoecology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:26
  • 期:2
  • 页码:67-82
  • 全文大小:1,532 KB
  • 参考文献:Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, Van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158(1):219–224. doi:10.​1046/​j.​1469-8137.​2003.​00721.​x CrossRef
    Alves S, Trancoso MA, de Lurdes Simões Gonçalves M, dos Santos MMC (2011) A nickel availability study in serpentinised areas of Portugal. Geoderma 164(3–4):155–163. doi:10.​1016/​j.​geoderma.​2011.​05.​019 CrossRef
    Anderson PR, Christensen TH (1988) Distribution coefficients of Cd Co, Ni, and Zn in soils. J Soil Sci 39(1):15–22. doi:10.​1111/​j.​1365-2389.​1988.​tb01190.​x CrossRef
    Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3(1–4):643–654. doi:10.​1080/​0190416810936286​7 CrossRef
    Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1(2):81–126
    Baker AJM, Proctor J, van Balgooy MMJ, Reeves RD (1992) Hyperaccumulation of nickel by the flora of the ultramafics of Palawan, Republic of the Philippines. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, pp 291–304
    Bani A, Echevarria G, Montargès-Pelletier E, Gjoka F, Sulçe S, Morel JL (2014) Pedogenesis and nickel biogeochemistry in a typical Albanian ultramafic toposequence. Environ Monit Assess 186(7):4431–4442. doi:10.​1007/​s10661-014-3709-6 CrossRef PubMed
    Barbaroux R, Plasari E, Mercier G, Simonnot MO, Morel J-L, Blais JF (2012) A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Sci Total Environ 423:111–119. doi:10.​1016/​j.​scitotenv.​2012.​01.​063 CrossRef PubMed
    Basta NT, Ryan JA, Chaney RL (2005) Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. J Environ Qual 34(1):49–63. doi:10.​2134/​jeq2005.​0049dup CrossRef PubMed
    Becquer T, Bourdon E, Pétard J (1995) Disponibilité du nickel le long d’une toposéquence de sols développés sur roches ultramafiques de Nouvelle-Calédonie. C R Acad Sci II 321(7):585–592
    Becquer T, Pétard J, Duwig C, Bourdon E, Moreau R, Herbillon AJ (2001) Mineralogical, chemical and charge properties of Geric Ferralsols from New Caledonia. Geoderma 103(34):291–306. doi:10.​1016/​S0016-7061(01)00045-3 CrossRef
    Becquer T, Rigault F, Jaffré T (2002) Nickel bioavailability assessed by ion exchange resin in the field. Commun Soil Sci Plant Anal 33(3–4):439–450. doi:10.​1081/​CSS-120002755 CrossRef
    Becquer T, Quantin C, Boudot JP (2010) Toxic levels of metals in Ferralsols under natural vegetation and crops in New Caledonia. Eur J Soil Sci 61(6):994–1004. doi:10.​1111/​j.​1365-2389.​2010.​01294.​x CrossRef
    Bernal MP, McGrath SP (1994) Effects of pH and heavy metal concentrations in solution culture on the proton release, growth and elemental composition of Alyssum murale and Raphanus sativus L. Plant Soil 166(1):83–92. doi:10.​1007/​BF02185484 CrossRef
    Bernal MP, McGrath SP, Miller AJ, Baker AJM (1994) Comparison of the chemical changes in the rhizosphere of the nickel hyperaccumulator Alyssum murale with the non-accumulator Raphanus sativus. Plant Soil 164(2):251–259. doi:10.​1007/​BF00010077 CrossRef
    Bisessar SS (1989) Effects of lime on nickel uptake and toxicity in celery grown on muck soil contaminated by a nickel refinery. Sci Total Environ 84:82–90. doi:10.​1016/​0048-9697(89)90372-0 CrossRef PubMed
    Brooks RR, Robinson BH (1998) The potential use of hyperaccumulators and other plants for phytomining. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Wallingford, pp 327–356
    Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11(1):2–12. doi:10.​1007/​s00775-005-0056-7 CrossRef PubMed
    Callahan DL, Roessner U, Dumontet V, Perrier N, Wedd AG, O’Hair RAJ et al (2008) LC-MS and GC-MS metabolite profiling of nickel (II) complexes in the latex of the nickel-hyperaccumulating tree Sebertia acuminata and identification of methylated aldaric acid as a new nickel (II) ligand. Phytochemistry 69(1):240–251. doi:10.​1016/​j.​phytochem.​2007.​07.​001 CrossRef PubMed
    Callahan DL, Roessner U, Dumontet V, De Livera AM, Doronila A, Baker AJM, Kolev SD (2012) Elemental and metabolite profiling of nickel hyperaccumulators from New Caledonia. Phytochemistry 81:80–89. doi:10.​1016/​j.​phytochem.​2012.​06.​010 CrossRef PubMed
    Centofanti T, Siebecker MG, Chaney RL, Davis AP, Sparks DL (2012) Hyperaccumulation of nickel by Alyssum corsicum is related to solubility of Ni mineral species. Plant Soil 359(1–2):71–83. doi:10.​1007/​s11104-012-1176-9 CrossRef
    Chaney RL, Angle JS, Baker AJM, Li Y-M (1998) Method for phytomining of nickel, cobalt, and other metals from soil. U.S. Patent, 5, pp 711–784
    Chaney RL, Chen K-Y, Li Y-M, Angle JS, Baker AJM (2008) Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil 311(1–2):131–140. doi:10.​1007/​s11104-008-9664-7 CrossRef
    Chardot V, Massoura ST, Echevarria G, Reeves RD, Morel JL (2005) Phytoextraction potential of the nickel hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea. Int J Phytoremediation 7(4):323–335. doi:10.​1080/​1622651050032718​6 CrossRef PubMed
    Chardot V, Echevarria G, Gury M, Massoura S, Morel JL (2007) Nickel bioavailability in an ultramafic toposequence in the Vosges Mountains (France). Plant Soil 293(1–2):7–21. doi:10.​1007/​s11104-007-9261-1 CrossRef
    Chardot-Jacques V, Calvaruso C, Simon B, Turpault M-P, Echevarria G, Morel J-L (2013) Chrysotile dissolution in the rhizosphere of the nickel Hyperaccumulator Leptoplax emarginata. Environ Sci Technol 47(6):2612–2620. doi:10.​1021/​es301229m CrossRef PubMed
    Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth 192 pp
    Coinchelin D, Bartoli F, Robin C, Echevarria G (2012) Ecophysiology of nickel phytoaccumulation: a simplified biophysical approach. J Exp Bot 63(16):5815–5827. doi:10.​1093/​jxb/​ers230 CrossRef PubMed
    Cornu S, Deschatrettes V, Salvador-Blanes S, Clozel B, Hardy M, Branchut S, Le Forestier L (2005) Trace element accumulation in Mn–Fe-oxide nodules of a planosolic horizon. Geoderma 125(1–2):11–24. doi:10.​1016/​j.​geoderma.​2004.​06.​009 CrossRef
    Crooke WM (1956) Effect of soil reaction on uptake of nickel from a serpentine soil. Soil Sci 81(4):269–276CrossRef
    Dohrmann R (2006) Cation exchange capacity methodology II: a modified silver–thiourea method. Appl Clay Sci 34(1–4):38–46. doi:10.​1016/​j.​clay.​2006.​02.​009 CrossRef
    Dublet G, Juillot F, Morin G, Fritsch E, Fandeur D, Ona-Nguema G, Brown Jr, GE (2012) Ni speciation in a New Caledonian lateritic regolith: A quantitative X-ray absorption spectroscopy investigation. Geochim et Cosmochim Acta 95:119–133. doi:10.​1016/​j.​gca.​2012.​07.​030 CrossRef
    Echevarria G, Morel J-L, Fardeau J, Leclerc-Cessac E (1998) Assessment of phytoavailability of nickel in soils. J Environ Qual 27(5):1–7. doi:10.​2134/​jeq1998.​0047242500270005​0011x CrossRef
    Echevarria G, Massoura S, Sterckeman T, Becquer T, Schwartz C, Morel J-L (2006) Assessment and control of the bioavailability of nickel in soils. Environ Toxicol Chem 25(3):643–651. doi:10.​1897/​05-051R.​1 CrossRef PubMed
    Elzinga EJ, Sparks DL (2001) Reaction condition effects on nickel sorption mechanisms in illite–water suspensions. Soil Sci Soc Am J 65(1):94–101. doi:10.​2136/​sssaj2001.​65194x CrossRef
    Estrade N, Cloquet C, Echevarria G, Sterckeman T, Deng THB, Tang YT, Morel JL (2015) Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania). Earth Planet Sci Lett 423(1):24–25. doi:10.​1016/​j.​epsl.​2015.​04.​018 CrossRef
    Everhart JL, McNear D Jr, Peltier E, Van der Lelie D, Chaney RL, Sparks DL (2006) Assessing nickel bioavailability in smelter-contaminated soils. Sci Total Environ 367(2–3):732–744. doi:10.​1016/​j.​scitotenv.​2005.​12.​029 CrossRef PubMed
    Fan R, Gerson AR (2011) Nickel geochemistry of a Philippine laterite examined by bulk and microprobe synchrotron analyses. Geochim Cosmochim Acta 75(21):6400–6415. doi:10.​1016/​j.​gca.​2011.​08.​003 CrossRef
    Feng M, Shan X, Zhang S, Wen B (2005) A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ Pollut 137(2):231–240. doi:10.​1016/​j.​envpol.​2005.​02.​003 CrossRef PubMed
    Gabbrielli R, Pandolfini T (1984) Effect of Mg2+ and Ca2+ on the response to Ni toxicity in a serpentine endemic and Ni- accumulating species. Physiol Plant 62(4):540–544. doi:10.​1111/​j.​1399-3054.​1984.​tb02796.​x CrossRef
    Harper M, Davison W, Zhang H, Tych W (1998) Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measure fluxes. Geochim Cosmochim Acta 62(16):2757–2770. doi:10.​1016/​S0016-7037(98)00186-0 CrossRef
    Heikal MMD, Berry WL, Wallace A, Herman D (1989) Alleviation of nickel toxicity by calcium salinity. Soil Sci 147:413–415CrossRef
    Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193(4253):579–580. doi:10.​1126/​science.​193.​4253.​579 CrossRef PubMed
    Krämer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel Hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiol 115(4):1641–1650. doi:10.​1104/​pp.​115.​4.​1641 PubMed PubMedCentral
    Kukier U, Chaney RL (2001) Amelioration of nickel phytotoxicity in muck and mineral soils. J Environ Qual 30(6):1949–1960. doi:10.​2134/​jeq2001.​1949 CrossRef PubMed
    Kukier U, Chaney RL (2004) In situ remediation of nickel phytotoxicity for different plant species. J Plant Nutr 27(3):465–495. doi:10.​1081/​PLN-120028874 CrossRef
    Kukier U, Peters CAC, Chaney RL, Angle JS, Roseberg RJR (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 33(6):2090–2102. doi:10.​2134/​jeq2004.​2090 CrossRef PubMed
    L’Huillier L, Edighoffer S (1996) Extractability of nickel and its concentration in cultivated plants in Ni-rich ultramafic soils of New Caledonia. Plant Soil 186(2):255–264. doi:10.​1007/​BF02415521 CrossRef
    Leleyter L, Probst JL (1999) A new sequential extraction procedure for the speciation of particulate trace elements in river sediments. Int J Environ Anal Chem 73(2):109–128. doi:10.​1080/​0306731990803265​6 CrossRef
    Li Y-M, Chaney RL, Brewer EP, Angle JS, Nelkin J (2003) Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Technol 37(7):1463–1468. doi:10.​1021/​es0208963 CrossRef
    Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42(3):421–428. doi:10.​2136/​sssaj1978.​0361599500420003​0009x CrossRef
    Losfeld G, Escande V, Jaffré T, L’Huillier L, Grison C (2012) The chemical exploitation of nickel phytoextraction: an environmental, ecologic and economic opportunity for New Caledonia. Chemosphere 89(7):907–910. doi:10.​1016/​j.​chemosphere.​2012.​05.​004 CrossRef PubMed
    Ma Y, Lombi E, McLaughlin MJ, Oliver IW, Nolan AL, Oorts K, Smolders E (2013) Aging of nickel added to soils as predicted by soil pH and time. Chemosphere 92(8):962–968. doi:10.​1016/​j.​chemosphere.​2013.​03.​013 CrossRef PubMed
    Marcussen H, Holm PE, Strobel BW, Hansen HCB (2009) Nickel sorption to goethite and montmorillonite in presence of citrate. Environ Sci Technol 43(4):1122–1127. doi:10.​1021/​es801970z CrossRef PubMed
    Massoura ST, Echevarria G, Leclerc-Cessac E, Morel J-L (2004) Response of excluder, indicator, and hyperaccumulator plants to nickel availability in soils. Aust J Soil Res 42(8):933–938. doi:10.​1071/​SR03157 CrossRef
    Massoura ST, Echevarria G, Becquer T, Ghanbaja J, Leclerc-Cessac E, Morel J-L (2006) Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma 136(1–2):28–37. doi:10.​1016/​j.​geoderma.​2006.​01.​008 CrossRef
    McGrath SP, Shen ZG, Zhao FJ (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188:153–159. doi:10.​1023/​A:​1004248123948 CrossRef
    McNear DH Jr, Chaney RL, Sparks DL (2007) The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils: a multi-technique investigation. Geochim Cosmochim Acta 71(9):2190–2208. doi:10.​1016/​j.​gca.​2007.​02.​006 CrossRef
    McNear DH, Chaney RL, Sparks DL (2010) The hyperaccumulator Alyssum murale uses complexation with nitrogen and oxygen donor ligands for Ni transport and storage. Phytochemistry 71:188–200. doi:10.​1016/​j.​phytochem.​2009.​10.​023 CrossRef PubMed
    Mesjasz-Przybyłowicz J, Barnabas A, Przybyłowicz W (2007) Comparison of cytology and distribution of nickel in roots of Ni-hyperaccumulating and non-hyperaccumulating genotypes of Senecio coronatus. Plant Soil 293(1):61–78. doi:10.​1007/​s11104-007-9237-1 CrossRef
    Montargès-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A, Morel J-L (2008) Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study. Phytochemistry 69(8):1695–1709. doi:10.​1016/​j.​phytochem.​2008.​02.​009 CrossRef PubMed
    Nachtegaal M, Sparks DL (2003) Nickel sequestration in a kaolinite–humic acid complex. Environ Sci Technol 37:529–534. doi:10.​1021/​es025803w CrossRef PubMed
    Poulsen IF, Hansen HCB (2000) Soil sorption of nickel in presence of citrate or arginine. Water Air Soil Pollut 120(3):249–259. doi:10.​1023/​A:​1005201925212 CrossRef
    Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol Evol Syst 6(1–2):105–124. doi:10.​1078/​1433-8319-00045 CrossRef
    Puschenreiter M, Schnepf A, Millán IM, Fitz WJ, Horak O, Klepp J, Schrefl T, Lombi E, Wenzel WW (2005) Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense. Plant Soil 271(1–2):205–218. doi:10.​1007/​s11104-004-2387-5 CrossRef
    Quantin C, Becquer T, Rouiller JH, Berthelin J (2001) Oxide weathering and trace metal release by bacterial reduction in a New Caledonia Ferralsol. Biogeochemistry 53(3):323–340. doi:10.​1023/​A:​1010680531328 CrossRef
    Quantin C, Becquer T, Rouiller JH, Berthelin J (2002) Redistribution of metals in a New Caledonia Ferralsol after microbial weathering. Soil Sci Soc Am J 66(6):1797–1804. doi:10.​2136/​sssaj2002.​1797 CrossRef
    Quantin C, Ettler V, Garnier J, Šebek O (2008) Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites. C R Geosci 340(12):872–882. doi:10.​1016/​j.​crte.​2008.​07.​013 CrossRef
    Raous S, Echevarria G, Sterckeman T, Hanna K, Thomas F, Martins ES, Becquer T (2013) Potentially toxic metals in ultramafic mining materials: identification of the main bearing and reactive phases. Geoderma 192(1):111–119. doi:10.​1016/​j.​geoderma.​2012.​08.​017 CrossRef
    Rayment GE, Higginson FR (1992) Australian laboratory handbook of soil and water chemical methods. Inkata Press, Melbourne
    Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249(1):57–65. doi:10.​1023/​A:​1022572517197 CrossRef
    Reeves RD, Baker AJM, Borhidi A, Berazain R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83(1):1–10. doi:10.​1006/​anbo.​1998.​0786 CrossRef
    Robertson AI (1985) The poisoning of roots of Zea mays by nickel ions, and the protection afforded by magnesium and calcium. New Phytol 100:173–189. doi:10.​1111/​j.​1469-8137.​1985.​tb02769.​x CrossRef
    Robinson BH, Brooks RR, Kirkman JH, Gregg PEH, Gremigni P (1996) Plant-available elements in soils and their influence on the vegetation over ultramafic (“serpentine”) rocks in New Zealand. J R Soc N Z 26(4):457–468. doi:10.​1080/​03014223.​1996.​9517520 CrossRef
    Robinson BH, Brooks RR, Clothier B (1999) Soil amendments affecting nickel and cobalt uptake by Berkheya coddii: potential use for phytomining and phytoremediation. Ann Bot 84(6):689–694. doi:10.​1006/​anbo.​1999.​0970 CrossRef
    Robinson BH, Lombi E, Zhao FJ, McGrath SP (2003) Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol 158(2):279–285. doi:10.​1046/​j.​1469-8137.​2003.​00743.​x CrossRef
    Salt DE, Kato N, Kramer U, Smith RD, Raskin I (2000) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 189–200
    Scheckel KG, Sparks DL (2001) Dissolution kinetics of nickel surface precipitates on clay mineral and oxide surfaces. Soil Sci Soc Am J 65(3):685–694. doi:10.​2136/​sssaj2001.​653685x CrossRef
    Shallari S, Echevarria G, Schwartz C, Morel J-L (2001) Availability of nickel in soils for the hyperaccumulator Alyssum murale (Waldst. and Kit.). S Afr J Sci 97:568–570
    Shi Z, Peltier E, Sparks DL (2012) Kinetics of Ni sorption in soils: roles of soil organic matter and Ni precipitation. Environ Sci Technol 46(4):2212–2219. doi:10.​1021/​es202376c CrossRef PubMed
    Siebecker M, Sparks DL (2010) Nickel speciation in serpentine soils using synchrotron radiation techniques. In: 2010 19th World congress of soil science, soil solutions for a changing world, 1–6 Aug 2010, Brisbane, Australia
    Siebielec G, Chaney RL, Kukier U (2007) Liming to remediate Ni contaminated soils with diverse properties and a wide range of Ni concentration. Plant Soil 299(1–2):117–130. doi:10.​1007/​s11104-007-9369-3 CrossRef
    Sochaczewski L, Tych Wlodek Davison B, Zhang H (2007) 2D DGT induced fluxes in sediments and soils (2D DIFS). Environ Model Softw 22:14–23. doi:10.​1016/​j.​envsoft.​2005.​09.​008 CrossRef
    Tappero R, Peltier E, Gräfe M, et al (2006) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175:641–654. doi:10.​1111/​j.​1469-8137.​2007.​02134.​x CrossRef
    Van der Ent A, Mulligan D (2015) Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. J Chem Ecol 41(4):396–408. doi:10.​1007/​s10886-015-0573-y CrossRef PubMed
    Van der Ent A, Reeves RD, Baker AJM, Pollard J, Schat H (2013a) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1–2):319–334. doi:10.​1007/​s11104-012-1287-3
    Van der Ent A, Baker AJM, Van Balgooy MMJ, Tjoa A (2013b) Ultramafic nickel laterites in Indonesia: mining, plant diversity, conservation and nickel phytomining. J Geochem Explor 128:72–79. doi:10.​1016/​j.​gexplo.​2013.​01.​009 CrossRef
    Van der Ent A, Mulligan D, Erskine PD (2013c) Discovery of nickel hyperaccumulators from Kinabalu Park, Sabah (Malaysia) for potential utilization in phytomining. In: Enviromine 2013, Santiago, Chile, 4–6 Dec 2013, pp 213–221
    Van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson C, Meech J, Erskine PD, Simonnot M-O, Vaughan J, Morel J-L, Echevarria G, Fogliani B, Mulligan D (2015a) ‘Agromining’: Farming for metals in the future? Environ Sci Technol 49(8):4773–4780. doi:10.​1021/​es506031u CrossRef PubMed
    Van der Ent A, Wong KM, Sugau J, Repin R (2015b) Plant diversity of ultramafic outcrops in Sabah (Malaysia). Aust J Bot 63:204–215. doi:10.​1071/​BT14214 CrossRef
    Van der Ent A, Erskine PD, Sumail S (2015c) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 25(5):243–259. doi:10.​1007/​s00049-015-0192-7 CrossRef
    Van der Ent A, Erskine PD, Mulligan DR, Repin R, Karim R (2016) Vegetation on ultramafic edaphic islands in Kinabalu Park (Sabah, Malaysia) in relation to soil chemistry and altitude. Plant Soil (in press)
    Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut 123(1):131–138. doi:10.​1016/​S0269-7491(02)00341-X CrossRef PubMed
    Yamaguchi NU, Scheinost AC, Sparks DL (2002) Influence of gibbsite surface area and citrate on Ni sorption mechanisms at pH 7.5. Clay Clay Miner 50(6):784–790CrossRef
    Zhao F, Hamon R, McLaughlin M (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol 151(3):613–620. doi:10.​1046/​j.​0028-646x.​2001.​00213.​x CrossRef
  • 作者单位:Antony van der Ent (1) (2)
    Guillaume Echevarria (2)
    Mark Tibbett (3)

    1. Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
    2. Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine – INRA, 54000, Nancy, France
    3. Centre for Agri-Environmental Research & Soil Research Centre, School of Agriculture, Policy and Development, University of Reading, RG6 6AR, Reading, UK
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Ecology
    Nature Conservation
  • 出版者:Birkh盲user Basel
  • ISSN:1423-0445
文摘
Nickel hyperaccumulator plants have been the focus of considerable research because of their unique ecophysiological characteristics that can be exploited in phytomining technology. Comparatively little research has focussed on the soil chemistry of tropical nickel hyperaccumulator plants to date. This study aimed to elucidate whether the soil chemistry associated with nickel hyperaccumulator plants has distinctive characteristics that could be indicative of specific edaphic requirements. The soil chemistry associated with 18 different nickel hyperaccumulator plant species occurring in Sabah (Malaysia) was compared with local ultramafic soils where nickel hyperaccumulator plants were absent. The results showed that nickel hyperaccumulators in the study area were restricted to circum-neutral soils with relatively high phytoavailable calcium, magnesium and nickel concentrations. There appeared to be a ‘threshold response’ for the presence of nickel hyperaccumulator plants at >20 μg g−1 carboxylic-extractable nickel or >630 μg g−1 total nickel, and >pH 6.3 thereby delimiting their edaphic range. Two (not mutually exclusive) hypotheses were proposed to explain nickel hyperaccumulation on these soils: (1) hyperaccumulators excrete large amounts of root exudates thereby increasing nickel phytoavailability through intense rhizosphere mineral weathering; and (2) hyperaccumulators have extremely high nickel uptake efficiency thereby severely depleting nickel and stimulating re-supply of Ni from diffusion from labile Ni pools. It was concluded that since there was an association with soils with highly labile nickel pools, the available evidence primarily supports hypothesis (2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700