A Novel Weakly-Intrusive Non-linear Multiresolution Framework for Uncertainty Quantification in Hyperbolic Partial Differential Equations
详细信息    查看全文
  • 作者:Gianluca Geraci ; Pietro Marco Congedo ; Rémi Abgrall…
  • 关键词:Multiresolution ; Uncertainty quantification ; Adaptive grid ; ENO ; MUSCL ; Hyperbolic conservation laws
  • 刊名:Journal of Scientific Computing
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:66
  • 期:1
  • 页码:358-405
  • 全文大小:3,283 KB
  • 参考文献:1.Abgrall, R., Congedo, P.M.: A semi-intrusive deterministic approach to uncertainty quantifications in non-linear fluid flow problems. J. Comput. Phys. 235, 828–845 (2013)MathSciNet CrossRef
    2.Abgrall, R., Congedo, P.M., Corre, C., Galera, S.: A simple semi-intrusive method for uncertainty quantification of shocked flows, comparison with non-intrusive polynomial chaos method. In: Pereira, J.C.F., Sequeira, A., Pereira, J.M.C. (eds.) Proceedings of the V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, Lisbon, Portugal, 14–17 June 2010
    3.Abgrall, R., Congedo, P.M., Galéra, S., Geraci, G.: Semi-intrusive and non-intrusive stochastic methods for aerospace applications. In: 4th European Conference for Aerospace Sciences, Saint Petersburg, Russia, pp. 1–8 (2011)
    4.Abgrall, R., Congedo, P.M., Geraci, G.: An adaptive multiresolution inspired scheme for solving the stochastic differential equations. In: Spitaleri (ed.) MASCOT11 11th Meeting on Applied Scientific Computing and Tools. Rome, Italy (2011)
    5.Abgrall, R., Congedo, P.M., Geraci, G.: Toward a unified multiresolution scheme in the combined physical/stochastic space for stochastic differential equations. Tech. rep., INRIA (2012)
    6.Abgrall, R., Congedo, P.M., Geraci, G.: A high-order adaptive semi-intrusive finite volume scheme for stochastic partial differential equations. In: MASCOT13 13th Meeting on Applied Scientific Computing and tools, San Lorenzo de El Escorial, Spain (2013)
    7.Abgrall, R., Congedo, P.M., Geraci, G.: A high-order non-linear multiresolution scheme for stochastic PDEs. In: European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs: Theory and Applications (HONOM 2013) (2013)
    8.Abgrall, R., Congedo, P.M., Geraci, G.: A one-time Truncate and Encode multiresolution stochastic framework. J. Comput. Phys. 257, 19–56 (2014). doi:10.​1016/​j.​jcp.​2013.​08.​006 MathSciNet CrossRef
    9.Abgrall, R., Congedo, P.M., Geraci, G., Iaccarino, G.: Adaptive strategy in multiresolution framework for uncertainty quantification. In: Prooceedings of the Summer Program, Center For Turbulence Research, pp. 209–218 (2012). http://​ctr.​stanford.​edu/​Summer/​SP12/​index.​html
    10.Abgrall, R., Congedo, P.M., Geraci, G., Iaccarino, G.: An adaptive multiresolution semi-intrusive scheme for UQ in compressible fluid problems. Int. J. Numer. Methods Fluids (2015). doi:10.​1002/​fld.​4030
    11.Abgrall, R., Harten, A.: Multiresolution representation in unstructured meshes. SIAM J. Numer. Anal. 35(6), 2128–2146 (1998). doi:10.​1137/​S003614299731505​6 MathSciNet CrossRef MATH
    12.Abgrall, R., Sonar, T.: On the use of Mühlbach expansions in the recovery step of ENO methods. Numerische Mathematik. 1–25 (1997). http://​www.​springerlink.​com/​index/​LTXHR8P0MC3QBQA7​.​pdf
    13.Amat, S., Aràndiga, F., Cohen, A., Donat, R.: Tensor product multiresolution analysis with error control for compact image representation. Signal Process. 82, 587–608 (2002). http://​www.​sciencedirect.​com/​science/​article/​pii/​S016516840100206​7
    14.Amat, S., Busquier, S., Trillo, J.: Nonlinear Harten’s multiresolution on the quincunx pyramid. J. Comput. Appl. Math. 189(1–2), 555–567 (2006). doi:10.​1016/​j.​cam.​2005.​03.​034 . http://​linkinghub.​elsevier.​com/​retrieve/​pii/​S037704270500143​3
    15.Aràndiga, F., Belda, A.M., Mulet, P.: Point-value WENO multiresolution applications to stable image compression. J. Sci. Comput. 43(2), 158–182 (2010). doi:10.​1007/​s10915-010-9351-8 MathSciNet CrossRef MATH
    16.Arandiga, F., Chiavassa, G., Donat, R.: Harten framework for multiresolution with applications: from conservation laws to image compression. Boletín SEMA 31(31), 73–108 (2009). http://​www.​sema.​org.​es/​ojs/​index.​php?​journal=​sema&​page=​article&​op=​view&​path[]=174
    17.Arandiga, F., Donat, R.: Nonlinear multiscale decompositions: the approach of A. Harten. Numer. Algorithms 23, 175–216 (2000). http://​www.​springerlink.​com/​index/​N363R0747675J70L​.​pdf
    18.Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52(2), 317 (2010). doi:10.​1137/​100786356 . http://​link.​aip.​org/​link/​SIREAD/​v52/​i2/​p317/​s1&​Agg=​doi
    19.Bellman, R.E., Richard, B.: Adaptive Control Processes: A Guided Tour. Princeton University Press (1961). http://​books.​google.​com/​books?​id=​POAmAAAAMAAJ&​pgis=​1
    20.Bihari, B.L., Harten, A.: Multiresolution schemes for the numerical solution of 2-D conservation laws I. SIAM J. Sci. Comput. 18(2), 315 (1997). doi:10.​1137/​S106482759427884​8 . http://​link.​aip.​org/​link/​SJOCE3/​v18/​i2/​p315/​s1&​Agg=​doi
    21.Chiavassa, G., Donat, R.: Point value multiscale algorithms for 2D compressible flows. SIAM J. Sci. Comput. 23(3), 805–823 (2001). http://​epubs.​siam.​org/​doi/​abs/​10.​1137/​S106482759936398​8
    22.Cohen, A., Dyn, N., Matei, B.: Quasilinear subdivision schemes with applications to ENO interpolation. Appl. Comput. Harmon. Anal. 15, 89–116 (2003). http://​www.​sciencedirect.​com/​science/​article/​pii/​S106352030300061​7
    23.Congedo, P.M., Geraci, G., Abgrall, R.: Semi-intrusive multi-resolution methods for stochastic compressible flows. In: VKI Lecture Series on ‘Uncertainty Quantification in Computational Fluid Dynamics’ (STO-AVT-235), Von Karman Institute For Fluid Dynamics (2014)
    24.Geraci, G.: Schemes and Strategies to Propagate and Analyze Uncertainties in Computational Fluid Dynamics Applications. Ph.D. thesis, INRIA and University of Bordeaux 1 (2013)
    25.Getreuer, P., Meyer, F.G.: ENO multiresolutions schemes with general discretizations. SIAM J. Numer. Anal. 46(6), 2953–2977 (2008). http://​epubs.​siam.​org/​doi/​pdf/​10.​1137/​060663763
    26.Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements. A Spectral Approach. Springer, Berlin (1991)CrossRef MATH
    27.Graham, I., Kuo, F., Nuyens, D., Scheichl, R., Sloan, I.: Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230(10), 3668–3694 (2011). doi:10.​1016/​j.​jcp.​2011.​01.​023 . http://​linkinghub.​elsevier.​com/​retrieve/​pii/​S002199911100048​9
    28.Harten, A.: Discrete multi-resolution analysis and generalized wavelets. Appl. Numer. Math. 12(13), 153–192 (1993). doi:10.​1016/​0168-9274(93)90117-A MathSciNet MATH
    29.Harten, A.: Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 135(2), 260–278 (1994). doi:10.​1006/​jcph.​1997.​5713 . http://​linkinghub.​elsevier.​com/​retrieve/​pii/​S002199919795713​2  http://​www.​sciencedirect.​com/​science/​article/​pii/​S002199918471199​5
    30.Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48(12), 1305–1342 (1995). doi:10.​1002/​cpa.​3160481201/​abstract MathSciNet CrossRef MATH
    31.Harten, A.: Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33(3), 1205–1256 (1996)MathSciNet CrossRef MATH
    32.Harten, A., Engquist, B., Osher, S.: Uniformly high order accurate essentially non-oscillatory schemes. III. J. Comput. Phys. 71(2), 231–303 (1987). doi:10.​1016/​0021-9991(87)90031-3 MathSciNet CrossRef MATH
    33.Le Maître, O., Knio, O.: Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Springer, Berlin (2010)CrossRef
    34.Leveque, R.J.: Finite Volume Methods for Conservation Laws and Hyperbolic Systems. Cambridge University Press, Cambridge (2002)CrossRef
    35.Orszag, S.: Dynamical properties of truncated Wiener-Hermite expansions. Phys. Fluids 10(12), 2603–2613 (1967)CrossRef MATH
    36.Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, Berlin (2000)
    37.Shu, C.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Tech. Rep. 97, ICASE Report No. 97–65 (1997). http://​link.​springer.​com/​chapter/​10.​1007/​BFb0096355
    38.Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Mechanics. Springer, Berlin (1997)CrossRef
    39.Tryoen, J.: Methodes de Galerkin stochastiques adaptatives pour la propagation d’incertitudes parametriques dans les systemes hyperboliques. Ph.D. thesis, Université Paris-Est (2011)
    40.Tryoen, J., Le Maître, O., Ern, A.: Adaptive anisotropic spectral stochastic methods for uncertain scalar conservation laws. SIAM J. Sci. Comput. 34, A2459–A2481 (2012)CrossRef MATH
    41.Tryoen, J., Le Maître, O., Ndjinga, M., Ern, A.: Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229, 6485–6511 (2010). doi:10.​1016/​j.​jcp.​2010.​05.​007 MathSciNet CrossRef MATH
    42.Wan, X., Karniadakis, G.E.: Beyond Wiener Askey expansions: handling arbitrary PDFs. J. Sci. Comput. 27(1–3), 455–464 (2005). doi:10.​1007/​s10915-005-9038-8 MathSciNet
    43.Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003). doi:10.​1016/​S0021-9991(03)00092-5 MathSciNet CrossRef MATH
  • 作者单位:Gianluca Geraci (1)
    Pietro Marco Congedo (2)
    Rémi Abgrall (3)
    Gianluca Iaccarino (1)

    1. Flow Physics and Computational Engineering, Mechanical Engineering Department, Stanford University, 488 Escondido Mall, Stanford, CA, 94305-3035, USA
    2. INRIA Bordeaux–Sud-Ouest, 200 Avenue de la Vieille Tour, 33405, Talence Cedex, France
    3. Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Algorithms
    Computational Mathematics and Numerical Analysis
    Applied Mathematics and Computational Methods of Engineering
    Mathematical and Computational Physics
  • 出版者:Springer Netherlands
  • ISSN:1573-7691
文摘
In this paper, a novel multiresolution framework, namely the Truncate and Encode (TE) approach, previously proposed by some of the authors (Abgrall et al. in J Comput Phys 257:19–56, 2014. doi:10.​1016/​j.​jcp.​2013.​08.​006), is generalized and extended for taking into account uncertainty in partial differential equations (PDEs). Innovative ingredients are given by an algorithm permitting to recover the multiresolution representation without requiring the fully resolved solution, the possibility to treat a whatever form of pdf and the use of high-order (even non-linear, i.e. data-dependent) reconstruction in the stochastic space. Moreover, the spatial-TE method is introduced, which is a weakly intrusive scheme for uncertainty quantification (UQ), that couples the physical and stochastic spaces by minimizing the computational cost for PDEs. The proposed scheme is particularly attractive when treating moving discontinuities (such as shock waves in compressible flows), even if they appear during the simulations as it is common in unsteady aerodynamics applications. The proposed method is very flexible since it can easily coupled with different deterministic schemes, even with high-resolution features. Flexibility and performances of the present method are demonstrated on various numerical test cases (algebraic functions and ordinary differential equations), including partial differential equations, both linear and non-linear, in presence of randomness. The efficiency of the proposed strategy for solving stochastic linear advection and Burgers equation is shown by comparison with some classical techniques for UQ, namely Monte Carlo or the non-intrusive polynomial chaos methods. Keywords Multiresolution Uncertainty quantification Adaptive grid ENO MUSCL Hyperbolic conservation laws

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700